Можно ли запеленговать сигнал радиоприемника? История и современность вопроса. В стране Советов за радио надо было платить - Предметы советской жизни — ЖЖ Нормы на излучение гетеродина приемника

Начну из далека.
Мой дед по матери был страстным любителем. Всего.
Радио, фото, музыка и т.д. Был бы и автолюбителем, но увы, автомобили могли иметь только стахановцы, папанинцы, да герои-летчики, сталинские соколы.

Приведу цитату из воспоминаний мамы, где она пишет об отце
(воспоминания во многом личные, поэтому не буду приводить ссылку в сети).
«За что бы ни брался отец - он всё доводил до совершенства. Увлёкся фотографией - его работы брали на фотовыставки. Увлёкся радио - в начале 30-х годов мы слушали радио сначала по детекторному приёмнику, а потом по радиоприёмнику на лампах. Перед войной отец уже чертил схемы и делал сложные по тому времени радиоприёмники, по которым мы слушали музыку из за границы. Увлёкся стрельбой, ходил с мамой в тир, получили оба значки "Ворошиловский стрелок". Но на этом отец не успокоился, в 1940 году ездил на сборы (под Ленинградом) и вернулся оттуда со значком снайпера и привёз винтовку с оптическим прицелом. Когда началась война, с первых дней стал добиваться, чтобы его отправили на фронт снайпером, хотя у него, как и у всех железнодорожников, была бронь. Он говорил, что на фронте от него будет больше пользы, чем в тылу.»
К самостоятельному изготовлению радио людей толкал не только интерес к технике и энтузиазм. Ламповые радиоприемники появились в продаже на рубеже 30-х годов и были дефицитны. Да и стоили очень дорого.
Вот дед и сделал сам приемник на лампах. Чудом сохранилось старое фото (год узнать просто, девочка на фото - это мама, а родилась она в 1926 году, тут ей лет 6, значит - 1932-33).

Ящик большой, а радиолампа только одна. Мама вспоминала, как в детстве, когда она слушала радио, она явственно видела внутри этой лампы маленьких человечков, которые там пели песни, играли музыку и даже танцевали. Кто-то же ведь должен издавать звуки, которые слышны в наушниках.
Перед войной в доме уже имелся приличный радиоприемник.
Но через несколько дней после начала войны - приказ, все радиоприемники сдать в отделения министерства наркомата связи. Кто не сдаст - пеняйте на себя (лет 8 по 58-й статье), по законам военного времени.
После войны радиоприемники возвращали, если это было возможно.
Да вот только дед с войны не вернулся, погиб в 37 лет. Воронеж, где жили до войны мама и ее родители, весь лежал в руинах. Какие там еще радиоприемники? Начинали жить как бы с начала.
На этом предисловие заканчиваю.
Когда, наконец, отменили продовольственные карточки, ушло полуголодное время и имелся какой-то кров, люди стали вспоминать про радио. И тут еще какое-то телевидение начало появляться.
Эх, рассказал бы я про тогдашнее радио, да не помню, не было еще меня на свете. Но это не беда, есть информация в сети. .
И в ней написано то, что я искал - про регистрацию радиоприемников и телевизоров. А то как же, слушаешь радио, смотришь телевизор - плати. Купил - зарегистрируй.
«До 1961 года стационарные радиоприёмники нужно было регистрировать в ближайшем почтовом отделении и платить абонентскую плату 36 рублей в год (старыми) за ламповый приёмник и 12 рублей в год за детекторный. При выявлении незарегистрированного в установленные сроки радиоприемника, с его владельца взыскивался штраф в размере 50 рублей. Если же радиоприемник приходил в негодное состояние, был передан в пользование другому лицу или продан, владелец его должен был снять с учета радиоустановку, подав письменное заявление в то предприятие связи, где этот радиоприемник был зарегистрирован.»
У каждого радиоприемника было руководство по эксплуатации (инструкция), где в конце были пропечатаны такие, например, правила:





Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприемником прямого усиления в том, что наиболее критичные для качества приема части приемного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться под разные частоты, что позволяет выполнить их со значительно лучшими характеристиками.

Супергетеродинный приёмник изобрёл американец Эдвин Армстронг в 1918 году.

Упрощённая структурная схема супергетеродина показана на рисунке. Радиосигнал из антенны подаётся на вход усилителя высокой частоты (в упрощённом варианте он может и отсутствовать), а затем на вход смесителя — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина. Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя (и контурами усилителя ВЧ) — обычно конденсатором переменной ёмкости (КПЁ), реже катушкой переменной индуктивности (вариометром, ферровариометром). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты (ПЧ) выделяется с помощью фильтра сосредоточенной селекции (ФСС) и усиливается одним или несколькими каскадами, после чего поступает на демодулятор, восстанавливающий сигнал низкой (звуковой) частоты. Обычно фильтр ПЧ рассосредоточен по всем каскадам усилителя промежуточной частоты, поскольку ФСС сильно ослабляет сигнал и приближает его к уровню шумов. А в приёмниках с фильтром с рассредоточенной селекцией в каждом каскаде сигнал лишь немного ослабляется фильтром, а затем усиливается, что позволяет улучшить отношение сигнал/шум. В настоящее время фильтр сосредоточенной селекции применяется лишь в относительно недорогих приемниках, выполненных на интегральных микросхемах (например К174ХА10), а также в телевизорах.

В обычных приёмниках длинных, средних и коротких волн промежуточная частота, как правило, равна 465 или 455 кГц, в ультракоротковолновых — 6,5 или 10,7 МГц. В телевизорах используется промежуточная частота 38 МГц. Так как супергетеродинный приёмник хорошо настроен на сигнал с промежуточной частотой, то даже слабый сигнал на этой частоте принимается. Поэтому промежуточная частота применяется для передачи сигналов SOS. На указанных частотах запрещена работа любых радиостанций мира.

Недостатки

Наиболее значительным недостатком является наличие так называемого зеркального канала приёма — второй входной частоты, дающей такую же разность с частотой гетеродина, что и рабочая частота. Сигнал, передаваемый на этой частоте, может проходить через фильтры ПЧ вместе с рабочим сигналом.

Например, если вход настроен на радиостанцию, передающую на частоте 70 МГц, а частота гетеродина равна 76,5 МГц, на выходе фильтра ПЧ будет нормальный сигнал с частотой 6,5 МГц. Однако, в случае присутствия другой мощной радиостанции на частоте 83 МГц её сигнал также может просачиваться на вход смесителя, и разностный сигнал с частотой также 83 - 76,5 = 6,5 МГц не будет подавлен. В таком случае приём сопровождается различными помехами. Избирательность по зеркальному каналу зависит от добротности и числа входных контуров. При двух перестраиваемых входных контурах требуется трёхсекционный конденсатор переменной ёмкости (КПЁ), что дорого.

Для уменьшения помех от зеркального канала часто применяют метод двойного (или даже тройного) преобразования частоты. Подобные приёмники, несмотря на достаточно высокую сложность построения и наладки, стали фактически стандартом в профессиональной и любительской радиосвязи.

В современных приёмниках в качестве гетеродина используется цифровой синтезатор частот с кварцевой стабилизацией.

Регенеративный радиоприёмник (регенератор) - радиоприёмник с положительной обратной связью в одном из каскадов усиления радиочастоты. Обычно прямого усиления, но известны и супергетеродины с регенерацией как в УРЧ, так и в УПЧ.

Отличается от приёмников прямого усиления более высокой чувствительностью (ограничена шумами) и избирательностью (ограничена устойчивостью параметров), пониженной устойчивостью работы.


Схема регенеративного радиоприёмника

История

Изобретён Э. Армстронгом во время учёбы в колледже, запатентован в 1914 году, после этого также запатентован Ли де Форестом в 1916. Это привело к судебной тяжбе продолжительностью в 12 лет, завершившейся в Верховном суде США в пользу Ли де Фореста.

Регенератор позволяет получить наибольшую отдачу от одного усилительного элемента. Поэтому в ранние годы развития радиотехники, когда лампы, пассивные детали и источники питания были дороги, он широко применялся в профессиональных, любительских и бытовых приёмниках, успешно конкурируя с изобретённым в 1918 г. тем же Армстронгом супергетеродином.

Абсолютный рекорд дальности радиосвязи до космической эры был установлен 12 января 1930 г. советским радистом Э.Т. Кренкелем с антарктической экспедицией Р.Э. Бёрда именно на регенеративном приёмнике.

С широким распространением в конце 1930х гг. смесительной лампы-гептода и кварцевых фильтров промежуточной частоты, преимущество супергетеродина в стабильности и избирательности стало решающим, и концу 1940х регенератор был полностью вытеснен из серьёзных применений, оставшись лишь в радиолюбительских наборах для сборки.

Достоинства и недостатки

Достоинства:

  • Высокие чувствительность и избирательность по сравнению с приёмниками прямого усиления и простыми супергетеродинами.
  • Простота и дешевизна
  • Низкое потребление энергии
  • Отсутствие побочных каналов приёма и самопоражённых частот

    Недостатки:

  • Излучение помех при работе в режиме генерации (и, как следствие, отсутствие скрытности)
  • Высокая чувствительность и избирательность достигаются ценой стабильности
  • Требует от оператора знания принципа работы

    Теоретические основы

    В регенеративном приёмнике добротность (Q) колебательного контура повышается путём компенсации части потерь за счёт энергии усилителя, т.е. введения положительной обратной связи.

    Добротность = резонансное сопротивление / сопротивление потерь, т.е. Q = Z / R
    Положительная обратная связь, компенсируя часть потерь, вносит некоторое отрицательное сопротивление: Qreg = Z / (R - Rneg)
    Коэффициент регенерации: M = Qreg / Q = R / (R - Rneg)

    Отсюда видно, что при увеличении обратной связи коэффициент регенерации M и добротность могут стремиться к бесконечности, но их практический рост ограничен стабильностью параметров схемы - если изменение коэффициента усиления будет больше 1 / M, то регенератор либо сорвётся в генерацию (если усиление выросло), либо потеряет половину чувствительности и избирательности (если усиление упало).

    Для улучшения стабильности и достижения плавности управления вблизи порога генерации, регенератор должен иметь отрицательную обратную связь по уровню сигнала или АРУ. В приведённой схеме такая ООС обеспечивается цепью R1C2 (гридлик, от англ. grid leak - утечка сетки) - сигнал детектируется диодом состоящим из сетки и катода лампы, и выделяется на резисторе R1. Переменная составляющая усиливается и звучит в наушниках, а постоянная подзапирает лампу и снижает её усиление.

    Без такой АРУ управление обратной связью будет очень "острым", и если регенератор сорвётся в генерацию, то размах колебаний будет ограничен только источником питания, а остановить его можно будет только намного уменьшив обратную связь (явление гистерезиса). Такой усилитель не годится для использования как регенератор.

    Радиоприёмник прямого усиления — один из самых простых типов радиоприёмников.


    Блок-схема приёмника прямого усиления

    Радиоприёмник прямого усиления (герадеаус) состоит из колебательного контура, нескольких каскадов усиления высокой частоты, квадратичного амплитудного детектора, а также нескольких каскадов усиления низкой частоты.

    Колебательный контур служит для выделения сигнала требуемой радиостанции. Как правило, частоту настройки колебательного контура изменяют конденсатором переменной ёмкости. К колебательному контуру подключают антенну, иногда и заземление.

    Сигнал, выделенный колебательным контуром, поступает на усилитель высокой частоты. Усилитель высокой частоты (УВЧ), как правило, представляет собой несколько каскадов избирательного транзисторного усилителя. С УВЧ сигнал подаётся на диодный детектор, с детектора снимается сигнал звуковой частоты, который усиливается ещё несколькими каскадами усилителя низкой частоты (УНЧ), откуда поступает на динамик или наушники.

    В литературе приёмники прямого усиления классифицируют по числу каскадов усилителей низкой и высокой частоты. Приёмник с n-каскадами усиления высокой и m-каскадами усиления низкой частоты обозначают n-V-m, где V обозначает детектор. Например, приёмник с одним каскадом УВЧ и одним каскадом УНЧ обозначается 1-V-1. Детекторный приёмник, который можно рассматривать как частный случай приёмника прямого усиления, обозначается 0-V-0.

    Преимущества и недостатки

    Основной недостаток приёмника прямого усиления — малая селективность (избирательность), то есть малое ослабление сигналов соседних радиостанций по сравнению с сигналом станции, на которую настроен приёмник (к регенеративному приемнику, являющемуся разновидностью приемника прямого усиления, это не относится). Поэтому этот тип приёмников удобно использовать только для приема мощных радиостанций, работающих в длинноволновом или средневолновом диапазоне (из-за особенностей распространения волн в ионосфере длинноволновые и средневолновые сигналы не могут распространяться слишком далеко, поэтому приёмник «видит» только ограниченное число местных станций). Из-за этого недостатка приёмники прямого усиления не производятся промышленностью и в основном используются ныне только в радиолюбительской практике.

    Как правило, радиоприёмники этого типа могут принимать только амплитудно-модулированные радиопередачи. Также обычно необходимо подключение внешней антенны и заземления, в связи с их невысокой чувствительностью, ограниченной усилением.

    Радиоприёмник прямого преобразования — вид радиоприемника, в котором принимаемый высокочастотный сигнал преобразуется непосредственно в выходной низкочастотный посредством смешения сигнала гетеродина с принимаемым сигналом. Частота гетеродина равна (почти равна) или кратна частоте сигнала. Также называется гомодинным или гетеродинным — не путать с супергетеродинным.

    История

    Первые приемники прямого преобразования появились на заре радио, когда ещё не было радиоламп, связи проводились на длинных и сверхдлинных волнах, передатчики были искровыми и дуговыми, а приёмники, даже связные - детекторными.

    Было замечено, что чувствительность детекторного приемника к слабым сигналам существенно возрастает, если с приемником был связан собственный маломощный генератор, работающий на частоте близкой к частоте принимаемого сигнала. При приеме телеграфного сигнала были слышны биения со звуковой частотой, равной разности частоты гетеродина и частоты сигнала. Первыми гетеродинами служили машинные электрогенераторы, потом их заменили генераторы на вакуумных лампах.

    К 40-м годам приемники прямого преобразования были вытеснены супергетеродинами и приемниками прямого усиления. Обуславливалось это тем, что основное усиление и селекция приемника прямого преобразования осуществлялось на низкой частоте. Построить на лампах усилитель с высокой чувствительностью и малым коэффициентом шума затруднительно. Возрождение приемников прямого преобразования началось в 60-х годах с применением новой элементной базы -операционных усилителей, транзисторов. Стало возможным применение высокодобротных активных фильтров на операционных усилителях. Оказалось что при сравнительной простоте приемники прямого преобразования показывают характеристики, сравнимые с супергетеродинами. Кроме того, так как частота гетеродина приемников прямого преобразования может быть в два раза ниже частоты сигнала, их удобно применять для приема сигналов КВЧ и СВЧ.

  • Наиболее перспективными приемными устройствами в оптическом диапазоне волн, способными принимать частотно-модулированные и фазо-модулированные сигналы, измерять доплеровский сдвиг частот, осуществлять однополосный прием и т.д., считаются супергетеродинные приемники. Супергетеродинные приемники по сравнению с приемниками прямого усиления позволяют существенно уменьшить влияние фоновых засветок. Возможность подавления фонового излучения супергетеродинными приемниками обусловлена тем, что их полоса пропускания сравнительно невелика и определяется полосой пропускания радиотехнических цепей.

    В то же время приемники прямого усиления принимают сигналы (и помехи) во всей полосе пропускания оптического фильтра. Использование супергетеродинных приемников оптического диапазона в различных системах связи и локации позволяет также подавить темновые шумы фотодетектора и ослабить влияние шумов последующих каскадов путем выбора мощности сигнала гетеродина.

    Рассмотрим некоторые особенности супергетеродинных приемников оптического диапазона волн. Известно, что в радиодиапазоне энергия кванта hf значительно меньше энергии теплового излучения kT. Так, на длине волны 3 мм hf = 6,6x10 -23 Дж, в то время как kT = 4x10 -21 дж (при работе приемника при комнатной температуре). Следовательно, чувствительность приемников в радиотехническом диапазоне волн ограничивается тепловыми шумами.

    В оптическом диапазоне волн на длине волны 1 мкм hf = 2x10 -19 Дж, т. е. тепловые шумы значительно меньше шумов, вызванных флуктуациями числа квантов. Следовательно, чувствительность приемников оптического диапазона ограничивается квантовыми флуктуациями.

    Мощность сигнала, минимально обнаруживаемого оптическими супергетеродинными приемниками, можно найти из выражения

    где h - постоянная Планка;

    f - частота излучения лазера;

    Δf - полоса пропускания приемника;

    q - квантовая эффективность детектора.

    Важной особенностью оптических супергетеродинных приемников является то, что мощность шумов приемника растет пропорционально мощности сигнала гетеродина. Чувствительность приемника при этом не ухудшается, так как с увеличением мощности гетеродина одновременно увеличивается мощность продетектированного сигнала. Этот эффект используют для подавления шумов приемника выбором необходимой мощности гетеродина. При некоторых значениях мощности гетеродина отношение сигнал/шум на выходе приемника может приближаться к отношению сигнал/шум нешумящего (идеального) приемника.

    В оптическом диапазоне волн важное значение имеет также амплитудно-фазовое распределение волн сигнала и гетеродина на чувствительной поверхности детектора. Обычно размеры чувствительной поверхности детектора значительно превышают длину волны принимаемого сигнала. Поэтому ток промежуточной частоты от различных участков поверхности детектора будет иметь разные фазы, что в итоге приводит к уменьшению тока промежуточной частоты на выходе смесителя.

    Для устранения этого явления необходимо, чтобы угол Θ между направлениями распространения волн сигнала и гетеродина

    где Д - диаметр освещенной поверхности детектора;

    λ - длина волны.

    Так, при λ = 1 мкм и Д = 2 мм угол Θ = 50". Это условие накладывает жесткие требования на ориентацию и качество оптической системы.

    В супергетеродинных приемниках лазерного излучения в качестве смесителей могут быть использованы детекторы приемников прямого усиления, т. е. вакуумные фотоэлементы, фотоумножители, фотодиоды, фото-ЛБВ и фотосопротивления.

    К наиболее распространенным приборам, используемым в качестве смесителей, относятся фотоумножители. Их достоинством является то, что благодаря большому внутреннему усилению они работают при малых мощностях гетеродина. Частотная характеристика обычных фотоумножителей имеет ширину 100-200 Мгц, но может быть значительно увеличена за счет использования фотоумножителей со скрещенными полями или фото-ЛБВ. Основной недостаток фотоумножителей - низкая квантовая эффективность.

    Большую квантовую эффективность имеют фотокатоды, которые обеспечивают прием широкополосных сигналов. К недостаткам фотокатодов относят отсутствие внутреннего усиления сигнала и большую величину темнового тока.

    Из краткого рассмотрения достоинств и недостатков различного типа приемников следует, что супергетеродинные приемники наиболее перспективны. Они имеют лучшую избирательность, большую чувствительность и лучшее соотношение сигнал/шум.

    Subcategory body:

    ГЕТЕРОДИННЫЕ ПРИЕМНИКИ ТЕРАГЕРЦОВОГО ДИАПАЗОНА

    Наиболее эффективными гетеродинными детекторами для радиоастрономии при изучении спектров межзвездного излучения в диапазоне частот 0,1 - 1,25 ТГц на сегодня признаны смесители на основе туннельных переходов сверхпроводник-изолятор-сверхпроводник (СИС - смеситель) . Данный тип гетеродинного приемника сочетает предельно низкую шумовую температуру, близкую к квантовому пределу, с широкой полосой промежуточных частот, а также требует малой мощности гетеродина. При дальнейшем повышении частоты (выше двойной щелевой частоты используемых сверхпроводников) чувствительность СИС -смесителей подает из-за увеличения внутренних потерь.

    Другим распространенным полупроводниковым преобразователем частоты в гетеродинном приемнике, который может работать в диапазоне частот 0,3 - 5 ТГц, является диод с барьером Шоттки (ДБШ - смеситель). ДБШ - смесители не требуют глубокого охлаждении и могут работать в диапазоне температур от комнатных до гелиевых, что является основным их преимуществом при освоении терагерцового диапазона. К существенным недостаткам ДБШ - смесителей следует отнести низкую чувствительность и большую требуемую мощность гетеродина (порядка милливатта).
    Указанные недостатки рассмотренных смесителей, применяемых в терагерцовом диапазоне, скорее всего, частично будут устраняться по мере их дальнейшего совершенствования, однако принципиальное улучшение характеристик смесительных устройств этого участка спектра возможно лишь путем использования новых физических механизмов преобразования частоты. Наиболее перспективным представляется использование эффекта разогрева электронов в резистивном состоянии тонких пленок сверхпроводников под действием терагерцового излучения и возникающей при этом инерционной нелинейности для преобразования частоты.
    Смесители на эффекте разогрева электронов в резистивном состоянии тонких сверхпроводящих пленок - hot-electron bolometer (НЕВ) -обладают хорошей чувствительностью наряду с достаточно широкой полосой частот преобразования, а также требуют малой мощности гетеродина при субмикронных размерах чувствительного элемента. Они являются весьма перспективными приемными элементами на частотах выше 1,25 ТГц, так как не имеют частотных ограничений по механизму смешения и не содержат реактивной компоненты, что облегчает задачу согласования смесителя с различными типами квазиоптических антенн.
    С уменьшением толщины сверхпроводящих пленок (d<10 нм для NbN) возрастает роль электрон -электронных столкновений в процессах энергообмена. Если пленки содержат большое количество статических дефектов, электроны рассеиваются не только на границах, но и на этих дефектах, в результате чего роль электрон -электронных столкновений становится определяющей в формировании функции распределения. При воздействии излучения на такие пленки, поглощенная энергия распределяется по электронной подсистеме, повышая ее температуру 0, что проявляется в росте сопротивления пленки. Эффект не зависит от частоты излучения - экспериментально доказана неселективность разогрева в диапазоне частот Ю10 - 1015Гц. Возбужденная электронная подсистема за счет электрон-фононного взаимодействия, характеризуемого временем электрон-фононного взаимодействия те.рь, остывает за время релаксации электронной температуры тв, передавая энергию фононной подсистеме пленки. На последнем этапе происходит остывание фононной подсистемы пленки за счет выхода неравновесных фононов в подложку. Описанный канал охлаждения электронной подсистемы называется фононным и реализуется в случае неупорядоченных плёнок с малой длиной свободного пробега. Полоса смесителей с фононным каналом охлаждения определяется в этом случае временем выхода неравновесных фононов в подложку resc и временем релаксации.
    Другой канал охлаждения электронов в сверхпроводящих смесителях на горячих электронах был предложен в и далее развит в целом ряде работ. Здесь в качестве "холодного" резервуара выступает не фононная подсистема, а массивные контакты прибора. В этом случае скорость остывания ограничивается диффузией горячих электронов в контакты, а прибор носит название болометра на горячих электронах с диффузионным каналом охлаждения. В настоящее время практическое применение находят только НЕВ-смесители первого типа.

    Определяющую роль в реализации многих приложений в терагерцовом спектральном диапазоне играет возможность совмещения большого динамического диапазона и широкой полосы промежуточных частот, используемых гетеродинных приемников излучения. Привлекательность НЕВ - смесителей с фононным каналом охлаждения в этом плане несомненна. Путем изменения объема чувствительного элемента смесителя, не ухудшая его эффективности преобразования, можно не только оптимизировать динамический диапазон приемника, но и регулировать величину требуемой оптимальной мощности гетеродина. Существующие твердотельные гетеродинные источники терагерцового излучения, применяемые в практических системах, не всегда имеют достаточный запас выходной мощности на частотах выше 1,5 ТГц.
    Увеличение полосы ПЧ для НЕВ - смесителей с фононным каналом охлаждения может быть достигнуто за счет применения как ультратонких пленок толщиной в единицы нанометров, так и промежуточных диэлектрических подслоев между сверхпроводящей пленки и подложкой для улучшения их акустического согласования.
    С радиотехнической точки зрения НЕВ - смеситель с фононным каналом охлаждения осуществляет нелинейное инерционное преобразование частоты. При этом, поскольку энергетическая щель в сверхпроводящей пленке в резистивном состоянии сильно подавлена и число квазичастиц велико, поглощение терагерцового излучения осуществляется почти так же, как если бы пленка находилась в нормальном состоянии и слабо зависит от выбора рабочей точки по постоянному току. Это позволяет достаточно просто согласовывать его с различными типами приемных антенн, поскольку импеданс пленки на высокой частоте является чисто активным и может быть оптимизирован путем изменения размеров чувствительного элемента в плане.
    Согласование НЕВ - смесителя с принимаемым электромагнитным излучением достигается путем использования волноводной или квазиоптической схем. В первом случае чип из тонкого кристаллического кварца со смесителем и ВЧ фильтрами монтируется в короткозамкнутой волноводной секции со скалярной рупорной антенной. Во втором случае чувствительный элемент интегрируется с планарной антенной, которая располагается во втором фокусе эллиптической или в фокусе гиперполусферической линзы, выполненной, как правило, из высокоомного кремния. Среди планарных антенн популярность снискали три типа: двухщелевая, спиральная, и логопериодическая. Последние два типа относятся к так называемым частотно - независимым антеннам, их ожидаемая полоса рабочих частот может составлять несколько октав. Двухщелевая антенна является резонансной структурой с рабочей полосой порядка 30 % от центральной частоты. Несмотря на широкое использование этих планарных антенн на диэлектрических подложках в квазиоптических схемах согласования с терагерцовым излучением, их характеристики, такие как входная полоса, диаграмма направленности, эффективность, поляризационная чувствительность, изучены наиболее полно лишь на частотах до 0,6 ТГц. Исследование характеристик планарных антенн на более высоких частотах, конструируемых путем масштабирования низкочастотного варианта антенны, остается пока неудовлетворительным, что является определенным препятствием их эффективного использования. Несмотря на это, все же происходит накопление экспериментального материала, который помогает определиться с выбором планарной антенны того или иного типа при создании гетеродинного приемника для практических применений. На частотах выше 1,5 ТГц чаще всего исследуются такие параметры антенны как входная полоса и диаграмма направленности.

    Наиболее активно используемым сверхпроводниковым материалом для создания НЕВ - смесителей терагерцового диапазона является высококачественные пленки нитрида ниобия.
    Значение полосы ПЧ квазиоптических смесителей, изготовленных на основе пленкиттолщиной 2.5-3.5 нм, осажденной на сапфировую подложку, достигает 4 ГГц, что не всегда достаточно для проведения радиоастрономических наблюдений, где в тракте ПЧ обычно используют малошумящие усилители с рабочей полосой 4-8 ГГц.
    Таким образом, вопрос расширения полосы преобразования квазиоптических смесителей с фононным каналом охлаждения является весьма актуальным для практической радиоастрономии, что связано как с доплеровским уширением спектральных линий при наблюдении быстро перемещающихся источников терагерцового излучения, так и с ограниченностью перестройки частоты терагерцовых гетеродинных источников излучения.

    Windows 8