САЕ-системы в XXI веке. Общие сведения о CAD, CAM, CAE, PDM, CALS, CASE –системах Сравнение cae систем

Пермский национальный исследовательский политехнический университет

Кафедра: Инновационные технологии в машиностроении

Реферат по дисциплине

Инженерный анализ изделий в САПР

САЕ системы. Решаемые задачи. Представители.

Выполнил:

студент группы ТКА-13-1бзу

Азанов А.С.

Проверил ст. преподаватель:

Осипович Дарья Андреевна

1. Общие понятия о САЕ системах…………………………………………………………………………3

2. Классификация САЕ систем……………………………………………………………………………...3

3. Возможности САЕ систем……………………………………………………………………………….4

4. Фирмы – представители САЕ систем…………………………………………………………………..4

5. Система NX CAE…………………………………………………………………………………………6

6. Этапы работы с САЕ…………………………………………………………………………………….10

Общие понятия о CAE системах.

CAE (Computer-Aided Engineering) - комплекс программных продуктов, которые способны дать пользователю характеристику того, как будет вести себя в реальности разработанная на компьютере модель изделия. По-другому CAE можно назвать системами инженерного анализа. В своей работе они используют различные математические расчеты: метод конечных элементов, метод конечных разностей, метод конечных объемов. При помощи CAE инженер может оценить работоспособность изделия, не прибегая к значительным временным и денежным затратам.

CAE неразрывно связаны с CAD и CAM. Развитие этих программных продуктов шло параллельно. В начале 80-х годов XX столетия первые пользователи CAD/CAM/CAE применяли для работы графические терминалы, которые были компонентами мейнфреймов IBM и Control Data. Основными поставщиками аппаратного и программного обеспечения CAD/CAM/CAE были компании Applicon, Auto-Trol Technology, Calma, Computervision и Intergraph. Поскольку мейнфреймы того времени были несовершенными, то появлялись определенные трудности. Интерактивный режим работы был практически недоступен из-за большой нагрузки на центральный процессор. Стоимость одной CAD/CAM/CAE системы составляла порядка $90000. С развитием прогресса аппаратные платформы CAD/CAM/CAE систем перешли с мейнфреймов на персональные компьютеры. Это было связано с меньшей стоимостью и большей производительностью ПК по сравнению с мейнфреймами. Закономерно снизилась и цена на CAD/CAM/CAE до $20000. На базе ПК создавались рабочие станции для CAD, которые поддерживали архитектуру IBM PC или Motorola. В середине 80-х годов появились архитектуры микропроцессоров с усеченным набором команд RISC (Reduced Instruction Set Computing). На их основе были разработаны более производительные рабочие станции, опиравшиеся на операционную систему Unix. С середины 90-х годов конкуренцию системам RISC/Unix



составили технологии, разработанные компанией Intel на основе операционных систем MS Windows NT и MS Windows 2000. В настоящее время стоимость CAD/CAM/CAE систем снизилась и составляет не более $10000.

Классификация САЕ систем.

САЕ системы подразделяются:

Системы полнофункционального инженерного анализа, обладающие мощными средствами, большими хранилищами типов для сеток конечных элементов, а также всевозможных физических процессов. В них предусмотрены собственные средства моделирования геометрии. Кроме того, есть возможность импорта через промышленные стандарты Parasolid, ACIS. Самыми известными подобными системами считаются ANSYS/Multiphysics, AI*NASTRAN и MSC.NASTRAN.

Системы инженерного анализа, встроенные в тяжелые САПР, имеют значительно менее мощные средства анализа, но они ассоциативны с геометрией, поэтому отслеживают изменения модели. Расчетные данные структурированы и интегрированы в общую систему проектирования тяжелой САПР. К ним относятся Pro/MECHANICA для Pro/ENGINEER, Unigraphics NX CAE для Unigraphics NX, Extensive Digital Validation (CAE) для I-deas, Catia CAE для CATIA;

Системы инженерного анализа среднего уровня не имеют мощных расчетных возможностей и хранят данные в собственных форматах. Некоторые их них включают в состав встраиваемый интерфейс в CAD-системы, другие считывают геометрию из CAD. К первым относятся COSMOS/Works, COSMOS/Motion, COSMOS/FloWorks для SolidWorks, ко вторым - visualNastran, Procision.

Возможности САЕ систем.

С помощью САЕ можно проводить:

· Стресс-анализ компонентов и узлов на основе метода конечных элементов;

· Термический и гидродинамический анализ;

· Кинематические исследования;

· Моделирование таких процессов, как литье под давлением;

· Оптимизацию продуктов или процессов.

4. Фирмы – представители CAE систем .

Основные фирмы – представители CAE – систем:

Пакет SolidWorks. Это мощный машиностроительный CAD пакет для твёpдотельного пapaметpического моделиpовaния сложных деталей и сборок. Системa констpуиpовaния сpеднего клaссa, бaзиpующaяся нa пapaметpическом геометpическом ядpе Parasolid. Создaнa специaльно для использовaния нa пеpсонaльных компьютеpaх под упpaвлением опеpaционных систем Windows 95 и Windows NT.

  1. SolidWorks.
  2. Аскон.
  3. Delcam.

Пакет Pro/ENGINEER. Это система высокого уровня, САПР для единого цикла проектирование-производство. Программный комплекс Pro/ENGINEER охватывает весь цикл "конструирование - производство" в машиностроении. Во всем мире более 16000 компаний используют программные продукты фирмы РТС для сокращения длительности сквозных проектно-производственных циклов, оптимизации инженерных процессов и улучшения качества продукции. Ядро Pro/ENGINEER использует уникальную по своим возможностям технологию -- Proven Technology, основанную на граничных представлениях
Разработчик - Parametric Technology Corporation, США.

Примеры фирм – представителей:

Пакет SolidCAM. Пакет генерации управляющих программ для станков с ЧПУт при обработке деталей, содержащих сложную поверхностную или твердотельную геометрию. Обеспечивает 2,5 и 3-осевую фрезерную обработку, токарную обработку, визуализацию процесса обработки.
Разработчик - CADTECH, Израиль.

Пакет Ansys. Конечноэлементный пакет. Самое широко используемое средство обеспечения инженерных расчётов в мире. Универсальный расчетный комплекс, применяемый в различных видах анализа. Используется для расчета конструкций различного типа (авиастроение, судостроение, машиностроение, строительство, энергетика, электронная промышленность и др.) на воздействия различной природы. С его помощью производится как линейный, так и нелинейный статический и динамический анализ конструкций, анализ усталостных разрушений, решение линейных и нелинейных задач устойчивости и теплофизики. Задачи гидро- и газодинамики, акустики, электродинамики и электростатики, пьезоэлектричество. Единственный из представленных на мировом рынке комплекс, с помощью которого с использованием одной базы решаются связанные задачи типа теплофизика-прочность, электродинамика-прочность, гидро-газодинамика и прочность и др. ANSYS позволяет конструктору ещё в процессе проектирования предсказать поведение изделия и провести прочностной, модальный и тепловой анализы.; сведения о напряжениях, деформациях, распределениях температур и тепловых потоков, возникающих в изделии. Основываясь на выводимых программой цветовых контурах, представляющих градации "необходимости" материала (оставить, убрать), конструктор убирает ненужный материал, подводя конструкцию к оптимальному весовому соотношению.
Разработчик - ANSYS Inc., США.

Пакет Unigraphics. Система Unigraphics является CAD/CAM/CAE - системой высокого уровня. Unigraphics позволяет осуществлять полностью виртуальное проектирование изделий, механообработка деталей сложных форм, имеет полностью ассоциативную базу данных мастер-модели, Unigraphics Solutions , одна из самых быстроразвивающихся компаний, производящих системы автоматизированного проектирования, производства и управления проектами, занимается разработкой, продажей и технической поддержкой программного обеспечения для автоматизации проектирования, производства, инженерного анализа и управления проектами для всех областей промышленности, включая автомобилестроение, авиационную и космическую промышленности, станкостроение, производство товаров народного потребления и т.п.
Серия продуктов Unigraphics Solutions, Inc.: Unigraphics Solutions, Parasolid, Solid Edge, Unigraphics, IMAN, ProductVision, GRIP .
Разработчик - Unigraphics Solutions, Inc., США.

Пакет CATIA. CATIА/CADAM Solutions - это полностью интегрированная универсальная CAD/CAM/CAE система высокого уровня, позволяющая обеспечить параллельное проведение конструкторско-производственного цикла CATIA, являясь универсальной системой автоматизированного проектирования, испытания и изготовления, широко применяется на крупных машиностроительных предприятиях во всем мире для автоматизированного проектирования, подготовки производства, реинжиниринга. Число фирм-пользователей CATIA превышает 8 тысяч.

Функции, поддерживаемые CATIA/CADAM Solutions :
- администрирование - планирование, управление ресурсами, инспектирование и документирование проекта;
- самый совершенный моделлинг;
- описание всех механических связей между компонентами объекта и приведение их в состояние пространственного взаимопозиционирования;
- автоматический анализ геометрических и логических конфликтов
- анализ свойств сложных сборок;
- разработанный инструментарий трассировок систем коммуникаций с соблюдением заданных ограничений;
- специализированные приложения для технологической подготовки производства.

Компании DASSAULT SYSTEMES (Франция) и IBM (США) являются совместными разработчиками и распространителями системы автоматизированного проектирования. В последние три года параллельно сосуществуют две CATIA: версии 4 и 5, причем версия 4 - только на рабочих станциях и на ядре DASSAULT SYSTEMES, а версия 5 - и для РС на ядре CASCADE разработки MATRA.

Постоянные трудности в разработке и сокращение сроков промышленных изделий поставили инженеров перед необходимостью сочетания эффективных методов для изучения особенностей поведения изделий с созданием реального прототипа. Практическое решение реальных промышленных задач механики, как правило, сводится к решению систем дифференциальных уравнений в частных производных. В 50-е годы были предприняты первые попытки приложения матричных методов к непрерывным структурам путем дискретизации на конечное число областей с заданными функциями аппроксимации неизвестных параметров. Появление электронно-вычислительной техники в 60-х годах оказало существенное влияние на аппарат численных методов, и дальнейшее их развитие неразрывно связано с прогрессом в области вычислительной техники.

Воплотившись в универсальных программных пакетах (получивших название Computer Aided Engineering - САЕ-системы), численные методы, в момент появления представлявшие только узконаучный интерес, за короткое время получили широкое распространение в инженерной среде. Полностью вытеснив старые методы, применяемые на стадии проектирования изделий, они стали основным средством при углубленном поверочном расчете.

Такая особенность методов, как работа с большими массивами данных, потребовала создания эффективных средств подготовки данных и обработки полученных результатов. В конце 70-х в расчетные пакеты был введен интерактивный режим работы. Это существенно упростило и ускорило процесс решения задач. Стало возможным использовать интерактивную графику для ввода и проверки геометрии модели, заданных свойств материала и граничных условий перед началом счета. Графическая информация предоставила возможность удобного визуального контроля результатов решения - зачастую единственно возможного способа оценки.

Стремительное развитие и распространение персональных компьютеров в последние годы привело к тому, что тяжелые расчетные программные пакеты стали доступны широчайшему кругу пользователей, постепенно спускаясь с многопроцессорных платформ сначала на рабочие станции UNIX, а затем и на ПК. Если в 1997 году, по статистическим данным, около 79% инсталляций систем САЕ приходилось на UNIX-платформы, то в 2000 году более 50% инсталляций будет приходиться на персоналки. За последний год на североамериканском рынке в сегменте компьютерных технологий наблюдается почти 25%-ный рост объемов, что в несколько раз превышает общие темпы роста по промышленности, при этом оборот рынка компьютерных технологий вышел на первое место по суммарному обороту, потеснив автомобильную отрасль. Это дает основания полагать, что в ближайшее время мы станем свидетелями бума компьютерных технологий, сравнимого по масштабам и последствиям только с появлением персональных компьютеров.

Современные САЕ-системы

Современные САЕ-системы представляют собой мощные средства инженерного анализа с развитым сервисным инструментарием, успешно применяющиеся для решения всех практических задач. В настоящее время на рынке представлено большое количество самых разнообразных расчетных пакетов. Рассмотрим программные продукты, основанные на методах конечных элементов (FEA), конечных (контрольных) объемов (control volumes) и т.д., которые традиционно применяются для решения задач прочности, электромагнитных полей, тепла, механики жидкостей и газов (CFD), акустики, моделирования техпроцессов и других инженерных проблем. Анализ динамики развития САЕ-систем позволяет выделить следующие основные тенденции и актуальные направления:

  • многодисциплинарность;
  • повышение скорости и эффективности;
  • повышение доступности тяжелых технологий.

Рассмотрим подробнее каждое из этих направлений.

Многодисциплинарность

Любая из представленных на сегодняшнем рынке систем при своем появлении являлась специализированной и ориентированной на проблематику только одной области - вычислительной гидрогазодинамики, прочности и т.д. вследствие различия математического аппарата решения каждого из этих типов. Однако в процессе развития программных продуктов стала очевидной необходимость организации связи между разнородными типами анализа. Так, например, имея поле давлений и температур по результатам аэродинамического расчета, было бы эффективно и разумно использовать их как исходные данные внешних нагрузок для проведения прочностного анализа. Следует отметить, что именно тематика взаимодействия жидкостей и газов с деформируемой конструкцией является сегодня одной из самых актуальных и быстроразвивающихся.

Практически реализовать такую возможность можно двумя путями, а именно:

  • многодисциплинарностью в рамках одного пакета;
  • интеграцией разнородных пакетов.

Оба направления, являясь взаимодополняющими, активно поддерживаются в настоящее время всеми известными производителями программного обеспечения (ПО). Так, например, комплекс ANSYS, будучи исключительно прочностным, в дальнейшем расширил области применения и последовательно включил теплофизику, электромагнитные поля и гидрогазодинамику. Благодаря этому стало возможным решать не только задачи в каждой из вышеприведенных областей, но и так называемые связанные задачи (например, индукционный нагрев токопроводящих структур, и далее - термодеформации). Надо отметить, что теперь самой фирмой ANSYS комплекс позиционируется как многодисциплинарный (multiphysics), и именно это его свойство является одним из важнейших в конкурентной борьбе. О важности многодисциплинарных связанных задач говорит осуществленная в 1999 году покупка фирмой ANSYS компании Centric Engineering Systems, Inc и системы Spectrum, основанной на алгоритмах произвольного контактного взаимодействия эйлеровых (традиционно применяемых для моделирования механики жидкостей и газов) и лагранжевых (механика сплошных сред) структур произвольного вида - ALE. Ожидается, что усиленный таким образом ANSYS будет сверхэффективным инструментом для решения связанных многодисциплинарных задач сверхбольшой размерности. Возможность передачи поля давлений и температур из газодинамического анализа в прочностной блок на сегодняшний день имеется практически у всех известных разработчиков тяжелых инженерных систем: из CFDesign в NASTRAN (MSC), из PAMFLOW в РАМCRASH…

В этом проявляется и стремление крупных разработчиков ПО (так же, как и производителей «железа») упрочить свои позиции на рынке путем покупки достаточно известных систем среднего и даже тяжелого уровня. В области САПР - это недавняя покупка фирмой PTC (Pro/Engineer) пакета CADDS и чуть ранее - расчетной системы Mechanica; Unigraphics и Dassault - систем Solid Edge и SolidWorks соответственно. В сфере конечно-элементных пакетов - покупка в 1999 году MSC - MARC и пр.

Одним из новейших методов, позволяющих реализовать в рамках одной программы прямое взаимодействие деформируемых конструкций с потоками жидкостей и газов, является так называемое произвольное лагранж-эйлерово взаимодействие. Первые научные публикации, посвященные этой тематике, появились в 1988 году. Среди известных авторов, активно работающих в этой области, можно назвать Томаса Хьюджеса (Thomas J.R. Hughes) (перешедшего теперь вместе со своим пакетом Spectrum в ANSYS) и Тэда Белышко (Ted Belyshko). Другим подтверждением явно оформившейся тенденции в развитии конечно-элементных пакетов является LS-DYNA (LSTC - Livermore Software Technology Corp), известная своей ориентацией исключительно на высоконелинейные и быстротекущие термомеханические процессы и основанная на явной схеме интегрирования по времени (модифицированный метод центральных разностей). Первичный код программы был разработан как средство для решения задач контактного взаимодействия оболочечных конструкций. В дальнейшем под воздействием запросов со стороны военно-промышленного комплекса США и автомобильной и авиакосмической отраслей в программу были включены и успешно решаются задачи гидро- и газодинамики, причем основное внимание уделяется связанным задачам. Реализация механизма взаимодействия жидкостей и газов с деформируемой конструкцией сделала возможным моделирование взрывного воздействия на конструкции (скажем, подводного взрыва на под- или надводные суда с разрушением последних, взрыва на борту летательных аппаратов или штамповки взрывом, поведения жидкостей с открытой поверхностью в деформируемых тонкостенных конструкциях, каковыми являются все топливные баки аэрокосмической индустрии, и др.).

Кроме того, в результате многолетнего сотрудничества фирм ANSYS, Inc. и LSTC в программу ANSYS была полностью интегрирована система LS-DYNA. Это иллюстрирует еще одно направление современного рынка - планомерное включение в один пакет двух типов решателей (ранее присутствовавших только по отдельности и, таким образом, строго задававших область применения той или иной программы). Соединение в одной программной оболочке традиционных неявных методов решения с обращением матриц и явной схемы, как это произошло с ANSYS и LS-DYNA, позволяет полностью использовать преимущества обоих методов и осуществлять переход с одного метода на другой в процессе решения задачи. С учетом предназначения каждого и с использованием функции перехода могут быть решены задачи динамического поведения предварительно напряженных конструкций (попадание птицы в преднапряженную турбину двигателя, сейсмический анализ сооружений, нагруженных, например, собственным весом, и т.п.), а также задачи исследования разгрузки конструкций, подвергнутых большим деформациям (упругое пружинение тонкого штампованного листа и т.д.). За последние несколько лет преимущества использования обеих схем настолько очевидны, что многие производители стали включать в свои программы недостающую: в 1999 году в LS-DYNA появились свои собственные неявные решатели (используются методы разреженных матриц, предопределенных сопряженных градиентов, Ланцоша (Lanczos)). То же самое прослеживается во всех системах, ориентированных на нелинейные задачи: системы ABAQUS, MARC имеют и явные и неявные решатели. Таким образом, все известные конечно-элементные системы (за исключением пока I-DEAS и COSMOS) имеют обе схемы. Вполне вероятно, что в ближайшие пять лет конечно-элементные системы, как и системы среднего уровня, включат оба метода.

В то же время в силу очевидных трудностей при разработке собственными средствами многих разнородных решений практически все известные разработчики программного обеспечения стремятся создать прямые интерфейсы к известному ПО в смежных областях. В качестве иллюстрации можно привести общеевропейский проект CISPAR, начатый в 1995 году. Заказчиками являются AeroSpatiale, Daimler-Chrysler, Sulzer Innotech и др. Суть проекта - создание универсальной библиотеки COCOLIB, связывающей разнородные специализированные гидрогазодинамические (CFD) и известные прочностные пакеты (ANSYS, ABAQUS, NASTRAN и др.) с целью решения связанных задач, а также осуществляющей с определенной периодичностью цикл «CFD-расчет => выдача результатов в COCOLIB => передача из COCOLIB в прочностной пакет => прочностной анализ => выдача напряженно-деформированного состояния в COCOLIB => полная перестройка сетки, моделирующая движение деформируемых тел и изменение областей интергрирования для CFD, => CFD-расчет». Для этого проекта была выбрана CFD-система STAR-CD (Computational Dynamics, Inc.). Объявлено, что в 1999 году система COCOLIB будет открыта для широкого использования.

Повышение скорости и эффективности

В приложении к рассматриваемому ПО общие требования, предъявляемые к любому продукту на современном рынке, могут быть переформулированы следующим образом: минимизация временных затрат при максимальном количестве принятых инженерных решений и максимальной всесторонности и глубине анализа. Процесс решения любой задачи состоит из трех этапов: постановка и подготовка исходных данных - создание модели, приложение начальных и граничных условий и нагрузок (так называемый препроцессинг), непосредственно решение, а также просмотр и обработка результатов расчета (постпроцессинг). Известно, что при решении практических задач временные затраты в процентном отношении составляют: около 40% - препроцессинг, 20% - решение и 40% - постпроцессинг. Первый и третий этапы, а именно пре-и постпроцессинг (около 80% суммарного времени), в большинстве случаев осуществляются средствами единого графического интерфейса. Следовательно, определяющим параметром является интенсивность пользовательской работы с графической оболочкой программы, то есть эффективность рабочего окружения; для сокращения же общего времени необходимо повышать:

  • эффективность рабочего окружения;
  • эффективность решателей (solver);
  • спектр возможностей.

Эффективность рабочего окружения

Наиболее очевидным и необходимым является развитие инструментария графического интерфейса. Однако, согласно проведенным исследованиям, простое добавление новых, пусть даже очень эффективных сервисных функций начиная с некоторого их критического количества, не приводит к интенсификации работы пользователя. Разработчики ПО встают перед необходимостью дальнейшего развития сервисных средств и повышением мобильности доступа к ним, теряемой из-за чрезмерного усложнения структуры графической оболочки. Первым способом, который стал воплощаться в среде САЕ-комплексов гораздо позднее, является иконное построение меню, что, впрочем, не дает значимого прироста производительности. Таким образом, первый уровень автоматизации, заключающийся в предоставлении пользователю множества инструментов для выполнения отдельных операций (сложение твердых тел, разбиение на конечные элементы, задание нагрузок и пр.), оказывается недостаточным. Одним из найденных эффективных решений, в первую очередь опробованных на простом ПО и знакомых всем, а теперь переходящих в тяжелые расчетные комплексы, является технология Wizards. Wizards-технология переводит автоматизацию работ на следующий уровень - автоматизацию не отдельных операций, а логически структурированных определенных стандартных последовательностей действий. При этом пользователь действует в жестких рамках, требуемых для выполнения задачи операций, причем возможность ошибки исключается, так как система не позволяет перейти к последующему этапу без определения всех необходимых параметров на предыдущем. В настоящий момент большинство разработчиков тяжелого ПО только начинают внедрение Wizards.

В качестве иллюстрации приведем ПО фирмы ANSYS, Inc. Отработка методологии была проведена на системе конструкторского направления DesignSpace, и к 1997 году DesignSpace был уже полностью построен на системе из нескольких специализированных Wizards - для задач статики, тепла, собственных частот, оптимизации. При запуске Wizard последовательно проводит пользователя по всем этапам, начиная от импорта геометрической модели до автоматизированного создания отчета по результатам проведенного расчета. В 1999 году фирма внедрила в головной тяжелый продукт элементы этой технологии. Так, например, требуемое для решения контактных задач назначение контактирующих поверхностей и задание условий контактного взаимодействия было объединено в группу Contact Wizard, а в новом продукте ANSYS/Professional вся система меню основана на похожих принципах: система не позволит запустить задачу на счет, если, например, не заданы свойства материала. Иллюстрацией из смежной области являются последние нововведения в уже упомянутом комплексе STAR-CD. И стандартный графический интерфейс, и опционно поставляемые специализированные сеточные генераторы SAMM (Semi-Automatic Meshing Methodology, adapco), ICEM (ControlData - PTC) в 1999 году также включили в себя подобные шаблоны, ведущие пользователя по всем этапам построения сеток, при этом от входа в систему до получения сетки при наличии готовой геометрии требуется всего три-четыре щелчка мыши.

Знакомая каждому расчетчику проблема составления отчетов в значительной мере разрешена в DesignSpace и ANSYS функцией автоматизированного составления отчета в формате HTML с полным описанием всех параметров задачи и использованием анимации (в том числе в формате VRML). Достаточно новой и привлекательной для корпоративных клиентов явилась возможность быстрого доступа к результатам расчета, проведенного другим пользователем на базе Internet -технологий. Отметим, что два-три года назад начавшие широко внедряться в области тяжелых CAD системы и возможности внутрикорпоративного взаимодействия и менеджмента проектов начали появляться и у производителей САЕ (например, MSC/SuperModel), хотя в специфичных условиях наших производств они еще долго не будут востребованы.

Эффективность решателей

Скорость решения задачи определяется возможностями реализованного в решателе алгоритма. Главное требование к решателям - это их способность быстро и устойчиво решать задачи большой размерности. Если в 70-х годах, как правило, решались системы из нескольких сотен неизвестных, а сверхбольшими считались задачи в 10-20 тыс. неизвестных, то в настоящее время обычным является решение систем из нескольких сотен тысяч неизвестных на персональном компьютере. Наибольшая известная задача, решенная на сегодняшний день, - это моделирование термогидрогазодинамического поведения атомного реактора, проведенное в 1998 году инжиниринговой фирмой adapco при помощи пакета STAR-CD, в разработке которого adapco принимает участие. Размерность составила 57 800 400 млн. (элементов) и сотни миллионов степеней свободы. Решение проводилось на кластере из 64 рабочих станций IBM SP, объединенных в сеть, и заняло 55 часов.

Этот пример наглядно иллюстрирует, пожалуй, самое «горячее» направление современных разработок - параллелизацию вычислений путем декомпозиции расчетных заданий (Domain Decomposition) на сетевых кластерах (то есть системах, состоящих из объединенных в сеть нескольких одинаковых или разнородных компьютеров). Совместно с динамическим размещением массивов эти возможности впервые стали доступными в 1998-1999 годах. За текущий год множество пакетов анонсировали реализации обеих этих методик - структурные ANSYS, LS-DYNA, MARC, гидрогазодинамические STAR-CD, CFX, FLOW3D и пр. Современное состояние рынка параллельных алгоритмов характеризуется следующими чертами:

  • отсутствием среди производителей многопроцессорных комплексов явного лидера (CRAY, NEC, Fujitsu…);
  • отсутствием единых стандартов и четкого приоритета в развитии. В настоящий момент существует множество различных компьютерных архитектур. Все более завоевывающие рынок вследствие относительной простоты реализации и, соответственно, пониженной стоимости массивно-параллельные комплексы и кластерные системы хуже подходят для инженерных вычислений, чем относительно старая векторная платформа;
  • проблемами параллелизации программных кодов - широко апробированные старые схемы довольно трудно адаптируются, а во многих случаях и вообще не подходят. Достаточно широкий круг задач требует разработки принципиально новых алгоритмов, изначально ориентированных на параллельные вычисления.

Спектр возможностей системы

Этот пункт является наиболее очевидным и по сути просто означает общее развитие возможностей в рамках научно-технического прогресса. Преобладающей тенденцией для программных средств по вычислительной механике твердого и жидкого тела является все большее включение нелинейных алгоритмов и более богатый инструментарий по моделированию нестационарных (transient), динамических процессов. Достаточно ознакомиться с позитивными изменениями в универсальных расчетных комплексах за последнее время, чтобы понять, что практически все они включают нелинейные модели материалов, методов решения и пр. Так как ни одно явление реального мира не является линейным, богатство нелинейного инструментария означает полноту и точность описания физики событий реального мира.

Неидеальные шарниры с зазорами, появившиеся в версии 10.0 системы ADAMS, возможности решения задач по механике жидкостей с открытой поверхностью и автоматизированное решение магнитопрочностных, термопрочностных и гидрогазодинамически-прочностных задач, специальные элементы предварительного напряжения для моделирования болтовых и других стянутых соединений в ANSYS 5.6 - это лишь малая часть тех изменений, которые все более приближают универсальные системы к полному комплексному описанию проблем любой сложности.

Повышение доступности тяжелых технологий

Доступность является комплексной характеристикой, позволяющей снизить стоимость программного обеспечения, необходимых для его работы аппаратных платформ и требований к образовательному уровню пользователей и пр.

Как и на рынке CAD/CAM, в области САЕ на быстрорастущий и перспективный сектор рынка средних систем начали активно проникать производители тяжелых пакетов, выпуская более дешевые и упрощенные версии. При этом в отличие от рынка CAD/CAM-систем среднего уровня, где проявляется одновременно два процесса - стремление средних по всем позициям максимально приблизиться к тяжелым пакетам и создание «младших братьев» больших пакетов (PT/Modeler от Pro/Engineer, Prelude от EUCLIDE, Artisan от I-DEAS и др.), - для САЕ действует преимущественно последняя тенденция. Производители тяжелых САЕ-пакетов пошли по пути интеграции расчетных модулей в среду CAD с исключением достаточно широкого круга возможностей CAE за счет максимальной интеграции с CAD-системой. При этом основной идеей таких модулей является максимальное упрощение работы, позволяющее тем, кто не имеет глубоких знаний в области вычислительной механики, производить расчет изделия, не выходя из среды столь милого ему AutoCAD (SolidWorks, Solid Edge…). Автоматизация в данном случае играет роль защиты от ошибок несведущего пользователя. Функции контроля и защиты построены на определенных правилах и нормах, выработанных в узком кругу расчетчиков и заложенных в модули в виде программных рекомендаций и ограничений. За последние три года практически все разработчики выпустили подобные продукты. Среди конечно-элементных систем ANSYS выпустил серию продуктов Design Space, за ним COSMOS - CosmosWorks, NASTRAN - Working Model и т.д. Известный производитель системы ADAMS, ориентированной на задачи в области теоретической механики и лидирующей в этой области, фирма MDI выпустила продукт под названием Dynamic Designer, являющийся приложением к AutoCAD, SolidWorks, SolidEdge и др. Еще пять-семь лет назад такие расчетные модули, интегрированные в среду CAD-систем, существовали только для тяжелых CAD, причем были собственными разработками производителей систем проектирования. Со временем появились аналогичные модули для пакетов проектирования от производителей тяжелых CAE-систем. В настоящее время они, как правило, используются как оболочка (сеточный генератор и постпроцессор) к аналитическому ядру от производителя CAE-программы . Еще более наглядной иллюстрацией является наличие абсолютно во всех больших и во многих средних системах проектирования средств по кинематическому и динамическому анализу механизмов. Как правило, эти средства - производные от ADAMS.

В ценовой категории программного обеспечения среднего уровня еще каких-то 10 лет назад существовали только специализированные программы, которые пытались «дотянуться» до больших систем. Будучи достаточно популярными, недавно появившиеся вышеописанные модули стали вытеснять с этого сегмента рынка специализированные аналитические программы профессиональной расчетной направленности среднего уровня, предлагая вполне сопоставимые аналитические возможности, но обладая при этом существенно большей простотой использования. Так, совсем недавно, решение контактных (геометрически нелинейных) задач для сборок было прерогативой только дорогостоящих САЕ-пакетов и уделом специалистов-расчетчиков. С новой версией DesignSpace 5.0 решение такого рода задач упростилось буквально до трех-четырех щелчков мыши. При этом в случае сборки пользователь выполняет один дополнительный щелчок мыши по сравнению с аналогичным расчетом единичной детали, всего лишь соглашаясь с предлагаемыми программой условиями контакта деталей (при этом области контакта, свойства и пр. определяются автоматически).

Все это дает возможность предположить, что в данной области с высокой степенью вероятности могут возобладать программные продукты в виде описанных модулей условно-«конструкторской» направленности, построенных на технологиях больших систем, преимущество которых перед обычными пакетами среднего уровня состоит помимо всего прочего и в обеспечении восходящей масштабируемости.

С ростом производительности компьютерной техники системы автоматизации инженерного анализа, являясь стимулятором ее развития, все ближе подходят к практически полностью автоматизированным комплексам, моделирующим события в масштабе реального времени, не расчленяющим комплексные проблемы на чисто прочностные, тепловые, газодинамические и пр., с визуализацией результатов расчета на уровне профессиональных программ анимации.

«САПР и графика» 2"2000

CAD - компьютерная помощь в дизайне, проще говоря, программа черчения.
CAM - компьютерная помощь в производстве.
CAE - компьютерная помощь в инженерных расчетах.
GIS - географическая информационная система.
Большую помощь при подготовке данного материала оказала статья Сергея Котова из Томского Политехнического Университета "Обзор рынка САПР и информационных ресурсов сети Интернет" , предоставленная им самим.

Поиск по сайту www.сайт:

Пользовательский поиск

Для начала немного статистики:


Распределение влияния компаний-разработчиков на рынок САПР


Распределение влияния участников рынка систем автоматизированной подготовки производства

T-FLEX CAD

Система параметрического проектирования и черчения T-FLEX CAD является разработкой российской фирмы "Топ Системы". Система обладает следующими основными возможностями: параметрическое проектирование и моделировании; проектирование сборок и выполнение сборочных чертежей; полный набор функций создания и редактирования чертежей; пространственное моделирование, базирующееся на технологии ACIS; параметрическое трёхмерное твёрдотельное моделирование; управление чертежами; подготовка данных для систем с ЧПУ; имитация движения конструкции.
Система T-FLEX CAD попала в обзор за 1997 год лучших САПР.
Разработчик - Топ-Системы, Москва
http://www.tflex.com
http://www.topsystems.ru
- страница о Tflex на моем сайте.

bCAD

bCAD - программный проект, направленный на разработку новых технологий 3D графики и САПР, а также программ для 2D эскизирования и точного черчения, 3D моделирования и фотореалистичного тонирования, программная система 3D моделирования и визуализации для PC. bCAD спроектирован и разработан как универсальное рабочее место проектировщика, позволяющее производить широкий спектр работ в сквозном режиме - от чертежа к объёмной модели и наоборот - от трёхмерного представления к плоским проекциям: для исполнения технической документации, соответствующей требованиям стандартов, для получения реалистичных изображений, подготовки данных для расчётных систем. Сочитает в себе CAD, 3D моделирование и фотореалистичную визуализацию.
Разработчик - ProPro Group, Новосибирск.
http://www.propro.ru

КОМПАС

Один из лидирующих российских продуктов. CAD-система, предназначенная для широкого спектра проектно-конструкторских работ, лёгкая в освоении, удобная в работе и при этом имеющая стоимость, приемлемую для комплексного оснащения российских предприятий, в том числе средних и малых. Позволяет осуществлять двумерное проекти-рование и конструирование, быструю подготовку и выпуск разнообразной чертёжно-конструкторской документации, создание технических текстово-графических документов.
Разработчик - Аскон, Россия.
http://www.asсon.ru/

CADMECH

CADMECH - система проектирования деталей и сборочных единиц на базе AutoCAD.
CADMECH Desktop - трехмерная система проектирования деталей и сборочных единиц на базе Mechanical Desktop.
Разработчик - НПО "Интермех", Минск.
http://www.intermech.host.ru

CADRA

Система двумерного проектирования и черчения для машиностроения.
Разработчик - SofTECH, Inc., США.
http://www.softech.com

CADkey

3D графический пакет для проектирования, твёрдотельного, поверхностного и каркасного моделирования, визуализации и документирования простых и сложных деталей и сборочных единиц. 250000 инсталляций в разных странах.

Разработчик - Baystate Technologies, США.
http://www.cadkey.com
http://www.cadkey.de
http://www.cadkey.lv/ http://www.colla.lv

DesignCAD Pro

Система двумерного и трёхмерного проектирования и моделирования для профессиональных конструкторов и проектировщиков.
Разработчик - ViaGrafix, США.
http://www.viagrafix.com

IronCAD

Система автоматизированного проектирования для машиностроения. Обеспечивает двумерное проектирование и трёхмерное твердотельное моделирование.

Разработчик - Visionary Design Systems, Inc., США.
http://www.ironcad.com

BlueCAD

BlueCAD является 2D/3D CAD - системой для работы на персональных компьютерах.
Разработчик - CADWare, Италия.
http://www.cadware.it

Surface Express

Система поверхностного моделирования.
Разработчик - MCS, Inc., США.
http://www.mcsaz.com

RhinoCeros

Распространённая система NURBS - моделирования.
Разработчик - Robert McNeel & Associates, США.
http://www.rhino3d.com

CADdy

Система CADdy по функциональным возможностям занимает промежуточное положение между системами низкого и высокого уровней. Предназначена для решения комплексных интегрированных технологий от стадии проектирования до стадии производства в таких областях, как:
- архитектура;
- проектирование промышленных установок;
- машиностроение;
- электроника;
- оборудование зданий (отопление, вентиляция, сантехника, электротехника);
- инженерные сети и дороги;
- геодезия, картография.

Разработчик - фирма ZIEGLER-Informatics GmbH, Германия.
http://www.caddy.de
http://www.plaza.ch
http://www.caddy.ru

OmniCAD

Система двумерного проектирования, черчения и трёхмерного поверхностного моделирования.

SolidWorks

Мощный машиностроительный CAD пакет для твёpдотельного пapaметpического моделиpовaния сложных деталей и сборок. Системa констpуиpовaния сpеднего клaссa, бaзиpующaяся нa пapaметpическом геометpическом ядpе Parasolid. Создaнa специaльно для использовaния нa пеpсонaльных компьютеpaх под упpaвлением опеpaционных систем Windows 95 и Windows NT.
Разработчик - SolidWorks Corporation, США.
http://www.solidworks.com
http://www.uscad.com
http://www.delcam.ru ,
http://www.ascon.ru ,
http://www.intersed.kiev.ua/ ,
www.delcam-ural.ru ,
http://www.colla.lv ,
http://www.solidworks.lv/

SolidEdge

SolidEdge является принципиально новой системой автоматизированного конструирования, которая предназначена для разработки сборочных узлов и геометрического моделирования отдельных деталей. Solid Edge разработан специально для конструирования изделий машиностроения. Является системой среднего уровня, которая обеспечивает эффективное объектно-ориентированное параметрическое моделирование в среде Windows. Базируется на ядре геометрического моделирования Parasolid.
Разработчик - Unigraphics Solutions, США.

Cimatron

Cimatron - интегрированная CAD/CAM - система, предоставляющая полный набор средств для конструирования изделий, разработки чертёжно-конструкторской документа-ции, инженерного анализа, создания управляющих программ для станков с ЧПУ. Cimatron удовлетворяет запросам и требованиям самого широкого круга пользователей, работает на различных платформах, в том числе на персональных компьютерах. Пользователями сис-темы в мире являются около 6000 компаний.
Разработчик - Cimatron Ltd., Израиль.

VISI - Series

Развитая CAD/CAM - система. Обеспечивает двумерное проектирование и черче-ние, трёхмерное поверхностное и твердотельное моделирование, генерацию программ для станков с ЧПУ, визуализацию обработки детали.
Разработчик - Vero International, Inc., США.
http://www.veroint.com
http://www.verosoftware.com

HELIX

HELIX Design System - развитая САПР для двумерного и трёхмерного проектирования в машиностроении, дизайне и других отраслях. Позволяет осуществлять двумерное проектирование, трёхмерное каркасное, поверхностное и твердотёльное моде-лирование.
Разработчик - MicroCADAM Ltd., Великобритания.
http://www.microcadam.co.uk

Form-Z

Система двумерного проектирования и черчения, трёхмерного поверхностного и твёрдотельного моделирования, визуализации и анимации для профессионального дизайна, визуализации и проектирования.
Разработчик - Autodessys, Inc., США.

Alias¦Wavefront

Распространённые программные продукты двумерного и трёхмерного эскизирования и черчения, трёхмерного поверхностного и твёрдотельного моделирования, визуализации и анимации, для профессионального дизайна и проектирования.
Разработчик - Alias¦Wavefront, Канада.
http://www.aw.sgi.com
http://aliaswavwfront.com

CoCreate

Серия продуктов для проектирования и управления данными проекта: ME10 - проектирование и черчение; SolidDesigner - твердотельное моделирование и управление данными проекта.
Разработчик - CoCreate Software, Inc., Германия.
http://www.cocreate.com

VX VISION

CAD/CAM/CAE система среднего уровня.
Разработчик - Varimetrix Corp., Ltd., США.
http://www.vx.com

CADMAX

CADMAX SolidMaster - система автоматизированного проектирования, обеспечивающая двумерное проектирование, трёхмерное поверхностное и твердотельное моделирование.
Разработчик - CADMAX Corp., США.

BRAVO

Семейство продуктов для проектирования, подготовки конструкторской документации, подготовки производства и управления проектом в машиностроении. Продукты: Bravo XL, Bravo Sheet Metal Fabricator, Bravo NCG, Bravo Frame.
Разработчик - Applicon, Inc., США.
http://www.applicon.com

MicroStation

MicroStation - это профессиональная, высоко производительная система для 2D/3D - автоматизированного проектирования при выполнении работ, связанных с черчением, конструированием, визуализацией, анализом, управлением базами данных и моделированием. Обеспечивает практически неограниченными возможностями проектировщиков и конструкторов на платформах DOS, Windows и компьютерах различных типов.
MicroStation 95 - система коллективной работы, дающая всем участникам группы гарантию взаимного согласования независимо от аппаратного развития платформ.
Разработчик - Bentley, США.

Genius

Продукты Genius являются программным обеспечением для конструирования в машиностроении и создания чертежей с применением Автокада.

Genius Desktop - Объектно-ориентированная система трёхмерного проектирования машиностроительных деталей и сборок на базе Mechanical Desktop. Пакет предлагает дополнительные удобные инструменты для нанесения типовых конструктивных элементов, наполнения конструкции стандартными изделиями в виде твёрдотельных моделей и значительно облегчает работу конструктора при управлении компонентами сборки. Располагает библиотеками стандартных деталей в виде готовых параметрических деталей по целому ряду стандартов.
Genius 14 - это продукт, обеспечивающий высокопроизводительное двумерное автоматизированное проектирование и черчение в области машиностроения в среде AutoCAD R14.
Genius LT 97 - система двухмерного автоматизированного проектирования, предназначенная для создания и оформления машиностроительных чертежей и конструкторской документации на базе AutoCAD LT 97. Genius LT 97 включает в себя стандартные компоненты, автоматизированный интерфейс пользователя, а также ряд функциональных возможностей, повышающих производительность работы в среде AutoCAD LT 97.

Разработчик - Genius CAD-Software GmbH, Германия.

Power Solutions

Семейство продуктов Power Solutions охватывает все этапы производственного цикла:
- PowerShape - Система трёхмерного моделирования.
- PowerMILL - Мощнaя и пpостaя в использовaнии aвтономнaя системa aвтомaтической подготовки упpaвляющих пpогpaмм для 3/4 кооpдинaтной фpезеpной обpaботки нa любом стaнке с ЧПУ изделий, спpоектиpовaнных в любой CAD-системе.
- CopyCAD - система преобразования данных, полученных с координатно-измерительной машины, в компьютерную поверхностную модель.
- PowerINSERT - пакет для контроля точности с помощью 3-координатных измерительных машин.
- ArtCAM Pro - пакет для создания объёмного рельефа на базе плоского рисунка и создания управляющих программ для его мехобработки.
- DUCT 5 - CAD/CAM - система, позволяет проводить моделирование, черчение и подготовку управляющих программ для станков с ЧПУ.

Разработчик - DELCAM Plc., Великобpитaния.

hyperMILL

Пакет, позволяющиё реализовать завершающее технологическое звено в сквозной CAD/CAM/CAE-технологии - подготовка управляющих программ для станков с ЧПУ и изготовление изделий.
Разработчик - Open Mind Software Technologies GmbH, Германия.
http://www.openmind.de
http://www.acad.co.uk
http://www.autodesk.com

EdgeCAM

CAM - система. Решения для фрезерной, поверхностной, токарной и электроэрозионной обработки деталей.
Разработчик - Pathtrace, Великобритания.
http://www.pathtrace.com

ESPRIT

CAD/CAM - система на базе ядра Parasolid.
Разработчик - DP Technology, США.
http://www.dptechnology.com

SolidCAM

Пакет генерации управляющих программ для станков с ЧПУт при обработке деталей, содержащих сложную поверхностную или твердотельную геометрию. Обеспечивает 2,5 и 3-осевую фрезерную обработку, токарную обработку, визуализацию процесса обработки.
Разработчик - CADTECH, Израиль.

MasterCAM

CAD/CAM - система, занимающая лидирующее положение в мире по количеству продаж и инсталляций пакета среди CAD/CAM систем. Обеспечивает каркасное и поверхностное моделирование деталей, визуализацию и документирование простых и сложных деталей и сборочных единиц, разработку управляющих программ для токарной, фрезерной, электроэрозионной обработки на станках с ЧПУ.
Разработчик - CNC Software, США.

PEPS

CAM - система, автоматизированная подготовка фрезерной, токарной, лазерной, электроэрозионной обработки деталей.
Разработчик - Camtek Ltd., Великобритания.
http://www.camtek.co.uk

СПРУТ

Система технологического проектирования.
Разработчик - АО "Спрут-Технология", г.Набережные Челны, Россия.
http://www.sprut.ru

EUCLID3

САПР высокого уровня EUCLID, охватывающая все этапы проектирования, разработана фирмой MATRA DATAVISION, с оборотом более 10 миллиардов долларов США. Фирма занимается разработкой, продажей и сопровождением программного обеспечения CAD/CAM/CAE/PDM и программной среды для создания приложений. Основные продукты фирмы имеют торговые марки: EUCLID, PRELUDE, CAS.CADE. Они предназначены для таких областей, как авиация, космос, автомобилестроение, оборона, электромеханика, промышленный дизайн, атомное машиностроение, инжиниринг, производство товаров широкого потребления и др.
Разработчик - MATRA DATAVISION, Франция. В связи со входом компании MATRA Datavision в консорциум EADS (контрольный пакет акций которого имеет владелец MATRA Datavision Жан-Люк Лагардер) компания стала называться EADS MATRA Datavision

CATIA

CATIА/CADAM Solutions - это полностью интегрированная универсальная CAD/CAM/CAE система высокого уровня, позволяющая обеспечить параллельное проведение конструкторско-производственного цикла CATIA, являясь универсальной системой автоматизированного проектирования, испытания и изготовления, широко применяется на крупных машиностроительных предприятиях во всем мире для автоматизированного проектирования, подготовки производства, реинжиниринга. Число фирм-пользователей CATIA превышает 8 тысяч.

Функции, поддерживаемые CATIA/CADAM Solutions :
- администрирование - планирование, управление ресурсами, инспектирование и документирование проекта;
- самый совершенный моделлинг;
- описание всех механических связей между компонентами объекта и приведение их в состояние пространственного взаимопозиционирования;
- автоматический анализ геометрических и логических конфликтов
- анализ свойств сложных сборок;
- разработанный инструментарий трассировок систем коммуникаций с соблюдением заданных ограничений;
- специализированные приложения для технологической подготовки производства.

Компании DASSAULT SYSTEMES (Франция) и IBM (США) являются совместными разработчиками и распространителями системы автоматизированного проектирования. В последние три года параллельно сосуществуют две CATIA: версии 4 и 5, причем версия 4 - только на рабочих станциях и на ядре DASSAULT SYSTEMES, а версия 5 - и для РС на ядре CASCADE разработки MATRA (http://www.opencascade.com).

Unigraphics

Система Unigraphics является CAD/CAM/CAE - системой высокого уровня. Unigraphics позволяет осуществлять полностью виртуальное проектирование изделий, механообработка деталей сложных форм, имеет полностью ассоциативную базу данных мастер-модели, Unigraphics Solutions , одна из самых быстроразвивающихся компаний, производящих системы автоматизированного проектирования, производства и управления проектами, занимается разработкой, продажей и технической поддержкой программного обеспечения для автоматизации проектирования, производства, инженерного анализа и управления проектами для всех областей промышленности, включая автомобилестроение, авиационную и космическую промышленности, станкостроение, производство товаров народного потребления и т.п.
Серия продуктов Unigraphics Solutions, Inc.: Unigraphics Solutions, Parasolid, Solid Edge, Unigraphics, IMAN, ProductVision, GRIP .
Разработчик - Unigraphics Solutions, Inc., США.

MSC/InCheck

3D QuickFill

Программа, позволяющая на ранних стадиях проектирования изделия провести анализ литья по трёхмерной твёрдотельной модели. Предоставляет конструктору возможность наблюдать процесс заполнения литьевой формы с предоставлением результатов следующим параметрам: временя заполнения пресс-формы; время охлаждения летали; распределение температуры; наличие "раковин"; масса готового изделия.
Разработчик - Advanced CAE Technologies, Inc., США.

DEFCAR

CAD/CAM- система для проектирования и подготовки производства в кораблестроении.
Разработчик - Defcar Ingenieros, S.L., Испания.
http://www.defcar.es
http://www.defcar.com

VUTRAX

Vutrax PCB CAD - система автоматизированного проектирования электронных схем и печатных плат.
Разработчик - Computamation Systems Limited, Великобритания.
http://www.vutrax.co.uk

Protel

Protel PCB CAD - развитая система автоматизированного проектирования электронных схем и печатных плат.
Разработчик - Protel Technology Inc., США.
http://www.protel.com

UNICAM

UNICAM - система автоматизированного проектирования и изготовления электронных схем и печатных плат.
Разработчик - Unicam Software, Inc., США.
http://www.unicam.com

CAD STAR

Развитая система автоматизировации проектирования и изготовления электронных схем и печатных плат.
Разработчик - Zuken-Redag Group, Ltd., Великобритания.
http://www.redac.co.uk

SoftCAD

САПР для двумерного и трёхмерного проектирования в архитектуре и строительстве. Серия продуктов: ArchiTECH.PC, SoftCAD.3D, SoftCAD.2D.
Разработчик - SoftCAD International, США.
http://www.softcad.com

Design WorkShop

Система фотореалистичного трёхмерного моделирования и проектирования в архитектуре.
Разработчик - Artifice, Inc., США.
http://www.artifice.com

REBIS

Серия продуктов автоматизированного 2D/3D проектирования промышленных предприятий.
Разработчик - Rebis, Inc., США.
http://www.rebis.com

CADVANCE

Профессиональная CAD - система для архитекторов, инженеров, проектировщиков в строительстве и архитектуре.
Разработчик - Fit, Inc., США.
http://www.cadvance.com

Planit

Система автоматизированного двумерного и трёхмерного проектирования для профессиональных дизайнеров.
Разработчик - Planit Millenium, США.
http://www.planit.com

LS-DYNA

Разработчик LSTC (Livermore Software Technology Corp.) , коммерческое подразделение всемирно известного ядерного центра LLNL (Lawrence Livermore National Laboratory http://www.llnl.gov), США. Развивается с 1976г. Универсальный расчетный программный комплекс, ориентированный на численное моделирование высоконелинейных и быстротекущих процессов в термомеханических задачах механики деформируемого и жидкого тела. Среди гражданских приложений - краш-тесты, обработка металлов давлением, общие задачи динамической прочности, разрушения, взаимодействия деформируемых консткуций с жидкостями и газами и пр.
http://www.lsdyna.com
http://www.feainformation.com/ - Новости и много ссылок на проблемно-ориентированные сайты по приложениям пакета
http://www.cadfem.ru/ - Сайт генерального дистрибьютора LS-DYNA в СНГ

STAR-CD

Разработчик CD-adapco group , Великобритания. Развивается с 1987г. Многоцелевой тяжелый пакет для решения задач механики жидкостей и газов (CFD), ориентированный на промышленные задачи любой сложности.
http://www.cd.co.uk
http://www.adapco-online.com - Подборка материалов пользовательских конференций, полезных советов
http://www.cfd-online.com/Forum/starcd.cgi - Форум по практическим аспектам применения пакета
http://www.cadfem.ru/ - Сайт генерального дистрибьютора STAR-CD в СНГ

AutoSEA

Разработчик VASCi (Vibro Acoustic Sciences) , США. Тяжелый расчетный пакет виброакустического анализа в области средних и высоких частот.
http://www.vasci.com
http://www.cadfem.ru/ - Сайт генерального дистрибьютора AutoSEA в СНГ

LVMFlow

профессиональная CAM-система компьютерного 3D моделирования литейных процессов позволяющая автоматизировать рабочее место технолога – литейщика и снизить затраты времени и средств на подготовку новых изделий.
http://www.cadinfo.net/ .

По электронным САПР можно порекомендовать следующую страницу: http://www.rodnik.ru/htmls/f_main.htm . Здесь также можно загрузить документацию по этим САПР.

Функции CAE -систем довольно разнообразны, так как связаны с проектными процедурами анализа, моделирования , оптимизации проектных решений. В состав машиностроительных CAE-систем прежде всего включают программы для выполнения следующих процедур:

    моделирование полей физических величин, в том числе анализ прочности, который чаще всего выполняется в соответствии с МКЭ ;

    расчет состояний моделируемых объектов и переходных процессов в них средствами макроуровня ;

    имитационное моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри .

Основными частями программ анализа с помощью МКЭ являются библиотеки конечных элементов, препроцессор, решатель и постпроцессор.

Библиотеки конечных элементов (КЭ) содержат модели КЭ - их матрицы жесткости . Очевидно, что модели КЭ будут различными для разных задач (анализ упругих или пластических деформаций, моделирование полей температур, электрических потенциалов и т.п.), разных форм КЭ (например, в двумерном случае - треугольные или четырехугольные элементы), разных наборов координатных функций .

Исходные данные для препроцессора - геометрическая модель объекта, чаще всего получаемая из подсистемы конструирования. Основная функция препроцессора - представление исследуемой среды (детали) в сеточном виде, т.е. в виде множества конечных элементов.

Решатель - программа, которая ассемблирует (собирает) модели отдельных КЭ в общую систему алгебраических уравнений и решает эту систему одним из методов разреженных матриц .

Постпроцессор служит для визуализации результатов решения в удобной для пользователя форме. В машиностроительных САПР это графическая форма. Пользователь может видеть исходную (до нагружения) и деформированную формы детали, поля напряжений, температур, потенциалов и т.п. в виде цветных изображений, в которых палитра цветов или интенсивность свечения характеризуют значения фазовой переменной .

Основные функции cad-систем

Функции CAD -систем в машиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относят черчение, оформление конструкторской документации; к функциям 3D - получение трехмерных геометрических моделей, метрические расчеты, реалистичную визуализацию, взаимное преобразование 2D и 3D моделей. Трехмерные модели представляют в виде описания поверхностей, ограничивающих деталь, или указанием элементов пространства, занимаемых телом детали. Модели поверхностей сложной формы получают с помощью разновидностей кинематического метода , к которым относят вытягивание заданного плоского контура по нормали к его плоскости, протягивание контура вдоль произвольной пространственной кривой, вращение контура вокруг заданной оси, натягивание поверхности между несколькими заданными сечениями. В случае построения скульптурных поверхностей , проходящих через заданные точки пространства, применяют модели в форме Безье , а при требованиях высокой гладкости поверхности - модели в форме B-сплайнов . Синтез моделей сборок выполняют применением операций позиционирования и теоретико-множественных операций пересечения, объединения, вычитания к библиотечным элементам и вновь созданным моделям комплектующих деталей. В ряде систем предусмотрено также выполнение операций компоновки и размещения оборудования, проведения соединительных трасс и т.п.

К важным характеристикам CAD-систем относятся параметризация и ассоциативность . Параметризация подразумевает использование геометрических моделей в параметрической форме, т.е. при представлении части или всех параметров объекта не константами, а переменными. Параметрическая модель , находящаяся в базе данных, легко адаптируется к разным конкретным реализациям и потому может использоваться во многих конкретных проектах. При этом появляется возможность включения параметрической модели детали в модель сборочного узла с автоматическим определением размеров детали, диктуемых пространственными ограничениями. Эти ограничения в виде математических зависимостей между частью параметров сборки отражают ассоциативность моделей.

Параметризация и ассоциативность играют важную роль при проектировании конструкций узлов и блоков, состоящих из большого числа деталей. Действительно, изменение размеров одних деталей оказывает влияние на размеры и расположение других. Благодаря параметризации и ассоциативности изменения, сделанные конструктором в одной части сборки, автоматически переносятся в другие части, вызывая изменения соответствующих геометрических параметров в этих частях.

Корректные синтез и редактирование 3D твердотельных моделей изделий возможны с помощью нескольких методов.

Наиболее очевидный метод - задание проектировщиком изделия ограничений и условий, накладываемых на параметры модели и отражающих требования непересечения тел, соосности отверстий, компланарности, перпендикулярности и т.п.

В большинстве современных MCAD используется метод, основанный на использовании дерева построения модели. Деревом построения называют историю моделирования сборки, другими словами, последовательность операций создания модели, упорядоченную по времени их совершения. Согласно этому методу внесение изменений в ту или иную часть модели подразумевает переход в ту вершину дерева, которая соответствует изменяемой части, и после внесения изменений повторное выполнение всех последующих операций синтеза.

Третий способ - синхронное моделирование , основанное на автоматическом определении, благодаря применению экспертных систем , тех ограничений, которые в первом методе задаются пользователем. В результате упрощается работа конструктора, не требуются затраты времени на перестроение дерева модели.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(национальный исследовательский университет)

Филиал БОУ ВПО «ЮУрГУ» (НИУ) в г. Усть-Катаве

Кафедра «Машиноведение»

Специальность 151900 - Технология машиностроения

Реферат

«Особенности CAD/CAM/САЕ -систем»

по дисциплине «Основы технологии машиностроения»

Руководитель:

Сергеев С.В.

Выполнил:

Кузин С. С.

Усть-Катав 2015

Введение

1. Назначение систем моделирования

2. История развития

3. Общая классификация CAD/CAM/CAE-систем

4. Выгоды от применения

Заключение

Библиографический список

Введение

Сегодня под словом «САПР» понимается гораздо большее, нежели просто программно-аппаратный комплекс для выполнения проектных работ с использованием компьютеров и зачастую этот термин используется, прежде всего, как удобная аббревиатура для обозначения большого класса систем автоматизации. Это связано с тем, что за последние 10-15 лет такие системы прошли большой путь развития от «электронных кульманов» первого поколения, предназначенных в основном для машинной подготовки проектной документации, до современных систем, автоматизирующих практически все процессы, связанные с проектированием и изготовлением новых изделий, будь то деталь, узел машины или целый автомобиль, самолет или здание.

Разумеется, чем сложнее разрабатываемое изделие, тем более сложной и многофункциональной должна быть САПР. Системы проектирования в масштабах предприятия за рубежом принято определять как CAD /CAM /САЕ - системы, функции автоматизированного проектирования распределяются в них следующим образом модули CAD - для геометрического моделирования и машинной графики, модули подсистемы САМ - для технологической подготовки производства, а модули СAЕ - для инженерных расчетов и анализа с целью проверки проектных решений. Таким образом, современная система CAD/CAM/CAE способна обеспечить автоматизированную поддержку работ инженеров и специалистов на всех стадиях цикла проектирования и изготовления новой продукции.

В основу каждой САПРзаложена определенная математическая модель, формализующая описание и функционирование проектируемых изделий, и процессы их изготовления. И природа изделий, производственные процессы накладывают свою специфику на методы - их математического моделирования. В конечном счете, эта специфика приводит к существенному различию, систем проектирования и условия их использований.

1 . Назначение

CAD-системы предназначены для решения конструкторских задач и оформления конструкторской документации (более привычно они именуются системами автоматизированного проектирования САПР). Как правило, в современные CAD-системы входят модули моделирования трехмерной объемной конструкции (детали) и оформления чертежей и текстовой конструкторской документации (спецификаций, ведомостей и т.д.). Ведущие трехмерные CAD-системы позволяют реализовать идею сквозного цикла подготовки и производства сложных промышленных изделий.

В свою очередь, CAM -системы предназначены для проектирования обработки изделий на станках с числовым программным управлением (ЧПУ) и выдачи программ для этих станков (фрезерных, сверлильных, эрозионных, пробивных, токарных, шлифовальных и др.). CAM -системы еще называют системами технологической подготовки производства. В настоящее время они являются практически единственным способом для изготовления сложнопрофильных деталей и сокращения цикла их производства. В CAM - системах используется трехмерная модель детали, созданная в CAD -системе.

САЕ -системы представляют собой обширный класс систем, каждая из которых позволяет решать определенную расчетную задачу (группу задач), начиная от расчетов на прочность, анализа и моделирования тепловых процессов до расчетов гидравлических систем и машин, расчетов процессов литья. В CAЕ -системах также используется трехмерная модель изделия, созданная в CAD -системе. CAE -системы еще называют системами инженерного анализа.

Существует некоммерческая отраслевая организация CAD Society занимающаяся вопросами популяризации CAD/CAM/CAE -систем в мире.

2 . История развития

Историю развития рынка CAD/CAM/CAE -систем можно достаточно условно разбить на три основных этапа, каждый из которых длился, примерно, по 10 лет.

Первый этап начался в 70-е гг. В ходе его был получен ряд научно-практических результатов, доказавших принципиальную возможность проектирования сложных промышленных изделий. Во время второго этапа (80-е гг.) появились и начали быстро распространяться CAD/CAM/CAE -системы массового применения. Третий этап развития рынка (с 90-х гг. до настоящего времени) характеризуется совершенствованием функциональности CAD/CAM/CAE -систем и их дальнейшим распространением в высокотехнологичных производствах (где они лучше всего продемонстрировали свою эффективность).

На начальном этапе пользователи CAD/CAM/CAE - систем работали на графических терминалах, присоединенных к мэйнфреймам производства компаний IBM и Control Data , или же мини-ЭВМ PDP/11 (от Digital Equipment Corporation ) и Nova (производства Data General ). Большинство таких систем предлагали фирмы, продававшие одновременно аппаратные и программные средства (в те годы лидерами рассматриваемого рынка были компании Applicon , Auto-Trol Technology , Calma , Computervision и Intergraph ). У мэйнфреймов того времени был ряд существенных недостатков. Например, при разделении системных ресурсов слишком большим числом пользователей нагрузка на центральный процессор увеличивалась до такой степени, что работать в интерактивном режиме становилось трудно. Но в то время пользователям CAD/CAM/CAE -систем ничего, кроме громоздких компьютерных систем с разделением ресурсов (по устанавливаемым приоритетам), предложить было нечего, т.к. микропроцессоры были еще весьма несовершенными. По данным Dataquest , в начале 80-х гг. стоимость одной лицензии CAD -системы доходила до $90000.

Развитие приложений для проектирования шаблонов печатных плат и слоев микросхем сделало возможным появление схем высокой степени интеграции (на базе которых и были созданы современные высокопроизводительные компьютерные системы). В течение 80-х гг. был осуществлен постепенный перевод CAD -систем с мэйнфреймов на персональные компьютеры (ПК). В то время ПК работали быстрее, чем многозадачные системы, и были дешевле. По данным Dataquest , к концу 80-х гг. стоимость CAD -лицензии снизилась, примерно, до $20000.

Cледует сказать, что в начале 80-х гг. произошло расслоение рынка CAD-систем на специализированные секторы. Электрический и механический сегменты CAD-систем разделились на отрасли ECAD и MCAD. Разошлись по двум различным направлениям и производители рабочих станций для CAD-систем, созданных на базе ПК:

ѕ часть производителей сориентировалась на архитектуру IBM PC на базе микропроцессоров Intel х86 ;

ѕ другие производители предпочли ориентацию на архитектуру Motorola (ПК ее производства работали под управлением ОС Unix от AT&T , ОС Macintosh от Apple и Domain OS от Apollo ).

Производительность CAD -систем на ПК в то время была ограничена 16-разрядной адресацией микропроцессоров Intel и MS DOS . Вследствие этого, пользователи, создающие сложные твердотельные модели и конструкции, предпочитали использовать графические рабочие станции под ОС Unix с 32-разрядной адресацией и виртуальной памятью, позволяющей запускать ресурсоемкие приложения.

К середине 80-х гг. возможности архитектуры Motorola были полностью исчерпаны. На основе передовой концепции архитектуры микропроцессоров с усеченным набором команд (Reduced Instruction Set Computing - RISC ) были разработаны новые чипы для рабочих станций под ОС Unix (например, Sun SPARC ). Архитектура RISC позволила существенно повысить производительность CAD -систем.

С середины 90-х гг. развитие микротехнологий позволило компании Intel удешевить производство своих транзисторов, повысив их производительность. Вследствие этого появилась возможность для успешного соревнования рабочих станций на базе ПК с RISC/Unix -станциями. Системы RISC/Unix были широко распространены во 2-й половине 90-х гг., и их позиции все еще сильны в сегменте проектирования интегральных схем. Зато сейчас ОС MS Windows практически полностью доминирует в областях проектирования конструкций и механического инжиниринга, проектирования печатных плат и др. По данным Dataquest и IDC , начиная с 1997 г. рабочие станции на платформе Windows NT/Intel (Wintel ) начали обгонять Unix -станции по объемам продаж. За прошедшие с начала появления CAD/CAM/CAE -систем годы стоимость лицензии на них снизилась до нескольких тысяч долларов (например, $6000 у Pro/Engineer ).

3 . Общая классификация CAD/CAM/CAE истем

За почти 30-летний период существования CAD/CAM/CAE -систем сложилась их общепринятая международная классификация:

ѕ Чертежно-ориентированные системы, которые появились первыми в 70-е гг. (и успешно применяются в некоторых случаях до сих пор).

ѕ Системы, позволяющие создавать трехмерную электронную модель объекта, которая дает возможность решения задач его моделирования вплоть до момента изготовления.

ѕ Системы, поддерживающие концепцию полного электронного описания объекта (EPD ). EPD это технология, которая обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия, включая маркетинг, концептуальное и рабочее проектирование, технологическую подготовку, производство, эксплуатацию, ремонт и утилизацию. При применении EPD -концепции предполагается замещение компонентно-центрического последовательного проектирования сложного изделия на изделие-центрический процесс, выполняемый проектно-производственными командами, работающими коллективно. Вследствие разработки EPD -концепции и появились основания для превращения автономных CAD -, CAM - и CAE -систем в интегрированные CAD/CAM/CAE -системы.

Традиционно существует также деление CAD/CAM/CAE -систем на системы верхнего, среднего и нижнего уровней. Cледует отметить, что это деление является достаточно условным, т.к. сейчас наблюдается тенденция приближения систем среднего уровня (по различным параметрам) к системам верхнего уровня, а системы нижнего уровня все чаще перестают быть просто двумерными чертежно-ориентированными и становятся трехмерными.

Примерами CAD/CAM-систем верхнего уровня являются Pro/Engineer , Unigraphics , CATIA , EUCLID , I-DEAS (все они имеют расчетную часть CAE ).

В настоящее время на рынке широко используются два типа твердотельного геометрических ядра (Parasolid от фирмы Unigraphics Solutions и ACIS от Spatial Technology ). Наиболее известными CAD/CAM -системами среднего уровня на основе ядра ACIS являются: ADEM (Omega Technology ); Cimatron (Cimatron Ltd .); Mastercam (CNC Software , Inc .); AutoCAD 2000 , Mechanical Desktop и Autodesk Inventor (Autodesk Inc .); Powermill (DELCAM ); CADdy++ Mechanical Design (Ziegler Informatics GmbH ); семейство продуктов Bravo (Unigraphics Solutions ), IronCad (VDS ) и др. К числу CAD/CAM -систем среднего уровня на основе ядра Parasolid принадлежат, в частности, MicroStation Modeler (Bentley Systems Inc .); CADKEY 99 (CADKEY Corp.); Pro/Desktop (Parametric Technology Corp .); SolidWorks (SolidWorks Corp .); Anvil Express (MCS Inc .), Solid Edge и Unigraphics Modeling (Unigraphics Solutions ); IronCAD (VDS ) и др.

CAD -системы нижнего уровня (например, AutCAD LT , Medusa , TrueCAD , КОМПАС, БАЗИС и др.) применяются только при автоматизации чертежных работ.

4 . Выгоды от применения

CAD/CAM/CAE -системы занимают особое положение среди других приложений, поскольку представляют индустриальные технологии, непосредственно направленные в наиболее важные области материального производства. В настоящее время общепризнанным фактом является невозможность изготовления сложной наукоемкой продукции (кораблей, самолетов, танков, различных видов промышленного оборудования и др.) без применения CAD/CAM/CAE -систем. За последние годы CAD/CAM/CAE -системы прошли путь от сравнительно простых чертежных приложений до интегрированных программных комплексов, обеспечивающих единую поддержку всего цикла разработки, начиная от эскизного проектирования и заканчивая технологической подготовкой производства, испытаниями и сопровождением. Современные CAD/CAM/CAE -системы не только дают возможность сократить срок внедрения новых изделий, но и оказывают существенное влияние на технологию производства, позволяя повысить качество и надежность выпускаемой продукции (повышая, тем самым, ее конкурентоспособность). В частности, путем компьютерного моделирования сложных изделий проектировщик может зафиксировать нестыковку и экономит на стоимости изготовления физического прототипа. Даже для такого относительно несложного изделия, как телефон, стоимость прототипа может составлять несколько тысяч долларов, создание модели двигателя обойдется в полмиллиона долларов, а полномасштабный прототип самолета будет стоить уже десятки миллионов долларов.

Например, широко известен проект разработки компанией Shorts Brothers фюзеляжа для самолета бизнес-класса Learjet 45 при помощи современных CAD/CAM/CAE -систем. Результаты выполнения проекта просто впечатляют. Ранее компания Shorts использовала в проектно-конструкторских работах проволочное моделирование деталей. В создаваемых Shorts Brothers фюзеляжах самолетов обычно насчитывалось до 9500 структурных деталей. Подобные проекты могли потребовать более 440000 человеко-дней (до 4-х лет для завершения проекта).

Фюзеляж Learjet 45 оказался не только наиболее сложным среди существующих, но и был разработан в значительно меньшие сроки (на 40%), чем его предшественники. Кроме того, примерно в 10 раз было улучшено качество деталей и самой сборки фюзеляжа, а общее число деталей сокращено на 60% (при снижении объема основных переделок на 90% по сравнению с предыдущими проектами). В целом, компания Shorts смогла уменьшить число компонентов с 9500 до 3700 (на 60%). Полное время на проектирование и технологическую подготовку производства было сокращено до 125000 человеко-дней. Общее время разработки и технологической подготовки производства до 60000 человеко-дней, а весь цикл разработки типового фюзеляжа сократился с 4-х лет до 1,5-2 лет.

Отсюда следуют преимущества от применения CAD/CAM/CAE -систем:

ѕ Совершенствование методов проектирования, в частности, использование методов многовариантного проектирования и оптимизации для поиска эффективных вариантов и принятия решений.

ѕ Повышение доли творческого труда инженера-проектировщика.

ѕ Повышение качества проектной документации.

ѕ Совершенствование управления процессом разработки проектов.

ѕ Частичная замена натурных экспериментов и макетирования моделированием на ЭВМ.

ѕ Уменьшение объёма испытаний и доводки опытных образцов в результате повышения уровня достоверности проектных решений и, следовательно, снижение временных затрат.

система автоматизированное проектирование

Заключение

Потребности современного производства диктуют необходимость глобального использования информационных компьютерных технологий на всех этапах жизненного цикла изделия: от предпроектных исследований до утилизации изделия. Основу информационных технологий в проектировании и производстве сложных объектов и изделий составляют сегодня полномасштабные полнофункциональные промышленные САПР (CAD/CAM/CAE - системы). Активное использование во всем мире «легких» и «средних» САПР на персональных компьютерах для подготовки чертежной документации и управляющих программ для станков с ЧПУ и сближение возможностей персональных компьютеров и «рабочих станций» в автоматизации проектирования подготовило две тенденции в разработке и использовании САПР, которые наблюдаются в последнее время:

ѕ применение полномасштабных САПР в различных отраслях промышленности для проектирования и производства изделий различной сложности;

ѕ интеграция САПР с другими информационными технологиями.

Эти тенденции позволяют говорить, что уже в самом ближайшем будущем эффективность производства будет во многом определяться эффективностью использования на предприятиях промышленных САПР.

Библиографический список

1. Кунву Ли. Основы САПР. - СПб.: Питер, 2004.

2. Б. Хокс. Автоматизированное проектирование и производство. - М.: Мир, 1991.

3. «Компьютер Пресс», NN «1-12,1997 - ISSN 0868-6157.

4. В. Клишин, В. Климов, М. Пирогова. Интегрированные технологии Computervision. Открытые системы, # 2, 1997. с. 37-42.

Размещено на Allbest.ru

...

Подобные документы

    История развития рынка CAD/CAM/CAE-систем. Развитие приложений для проектирования шаблонов печатных плат и слоев микросхем. Проект разработки компанией Shorts Brothers фюзеляжа для самолета бизнес-класса Learjet 45, преимущества от применения программ.

    контрольная работа , добавлен 14.04.2014

    AutoCAD как одна из самых популярных графических систем автоматизированного проектирования, круг выполняемых ею задач и функций. Технология автоматизированного проектирования и методика создания чертежей в системе AutoCAD. Создание и работа с шаблонами.

    лекция , добавлен 21.07.2009

    Предпосылки внедрения систем автоматизированного проектирования. Условная классификация САПР. Анализ программ, которые позволяют решать инженерные задачи. Система управления жизненным циклом продукта - Product Lifecycle Management, ее преимущества.

    контрольная работа , добавлен 26.09.2010

    Анализ тенденций развития информационных технологий. Назначение и цели применения систем автоматизированного проектирования на основе системного подхода. Методы обеспечения автоматизации выполнения проектных работ на примере ЗАО "ПКП "Теплый дом".

    курсовая работа , добавлен 11.09.2010

    курсовая работа , добавлен 22.11.2009

    Анализ существующих систем автоматизированного проектирования. Преимущества и недостатки универсальных сборочных приспособлений, их конструирование и сборка, современное информационное обеспечение. Создание базы данных для САПР сборочных приспособлений.

    дипломная работа , добавлен 26.03.2012

    Концепция автоматизированного проектирования. Внедрение в практику инженерных расчетов методов машинной математики. Создание автоматизированных рабочих мест. Принцип декомпозиции при проектировании сложных конструкций, использование имитационных систем.

    реферат , добавлен 30.08.2009

    Системы автоматического проектирования. Сравнительный анализ средств для проектирования автоматизированных информационных систем. Экспорт SQL-кода в физическую среду и наполнение базы данных содержимым. Этапы развития и характеристика Case-средств.

    курсовая работа , добавлен 14.11.2017

    Изучение истории создания Mentor Graphics Corporation, которая является одним из мировых лидеров в области систем автоматизированного проектирования. Функции Altium Designer - комплексной системы автоматизированного проектирования радиоэлектронных средств

    реферат , добавлен 08.09.2015

    Создание программных комплексов для систем автоматизированного проектирования с системами объемного моделирования и экспресс-тестами. SolidWorks - мировой стандарт автоматизированного проектирования. Пользовательский интерфейс, визуализация модели.

Windows 7