Найти одз функции примеры. ОДЗ. Область Допустимых Значений. Сбор и использование персональной информации

Чтобы находить области определения распространённых функций, на этом уроке порешаем уравнения и неравенства с одной переменной.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

А что же такое область определения функции? Взглянем на график функции на рисунке. Каждой точке графика функции соответствует определённое значение "икса" - аргумента функции и определённое значение "игрека" - самой функции. От аргумента - "икса" - вычисляется "игрек" - значения функции. Область определения функции - это множества всех значений "икса", для которых существует, то есть может быть вычислен "игрек" - значение функции. Иначе говоря, множество значений аргумента, на котором "функция работает". Большая часть функций задаётся формулами. Поэтому область определения функции - это также наибольшее множество, на котором формула имеет смысл.

На рисунке изображён график функции . Знаменатель дроби не может быть равен нулю, так как на нуль делить нельзя. Поэтому, приравнивая знаменатель нулю, получаем значение, не входящее в область определения функции: 1. А область определения функции - это все значения "икса" от минус бесконечности до единицы и от единицы до плюс бесконечности. Это хорошо видно на графике

Пример 0. Как найти область определения функции игрек равен квадратному корню из икса минус пять (подкоренное выражение икс минус пять) ()? Нужно всего лишь решить неравенство

x - 5 ≥ 0 ,

так как для того, чтобы мы получили действительное значение игрека, подкоренное выражение должно быть больше или равно нулю. Получаем решение: область определения функции - все значения икса больше или равно пяти (или икс принадлежит промежутку от пяти включительно до плюс бесконечности).

На чертеже сверху - фрагмент числовой оси. На ней область опредения рассмотренной функции заштрихована, при этом в "плюсовом" направлении штриховка продолжается бесконечно вместе с самой осью.

Область определения постоянной

Постоянная (константа) определена при любых действительных значениях x R действительных чисел. Это можно записать и так: областью определения данной функции является вся числовая прямая ]- ∞; + ∞[ .

Пример 1. Найти область определения функции y = 2 .

Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f (x ) = 2 определено при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

Область определения корня n -й степени

В случае, когда функция задана формулой и n - натуральное число:

Пример 2. Найти область определения функции .

Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно, то есть, если - 1 ≤ x ≤ 1 . Следовательно, область определения данной функции - [- 1; 1] .

Заштрихованная область числовой прямой на чертеже сверху - это область определения данной функции.

Область определения степенной функции

Область определения степенной функции с целым показателем степени

если a - положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ ;

если a - отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[ , то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 3. Найти область определения функции .

Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы - так же целого числа. Следовательно, область определения данной функции - вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество 0; + ∞[ .

Пример 4. Найти область определения функции .

Решение. Оба слагаемых в выражении функции - степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции - множество - ∞; + ∞[ .

Область определения показательной и логарифмической функции

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[ .

Найти область определения функции самостоятельно, а затем посмотреть решение

Область определения тригонометрических функций

Область определения функции y = cos(x ) - так же множество R действительных чисел.

Область определения функции y = tg(x ) - множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x ) - множество R действительных чисел, кроме чисел .

Пример 8. Найти область определения функции .

Решение. Внешняя функция - десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь - синус "икса". Поворачивая воображаемый циркуль по окружности, видим, что условие sin x > 0 нарушается при "иксе" равным нулю, "пи", два, умноженном на "пи" и вообще равным произведению числа "пи" и любого чётного или нечётного целого числа.

Таким образом, область определения данной функции задаётся выражением

,

где k - целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x ) - множество [-1; 1] .

Область определения функции y = arccos(x ) - так же множество [-1; 1] .

Область определения функции y = arctg(x ) - множество R действительных чисел.

Область определения функции y = arcctg(x ) - так же множество R действительных чисел.

Пример 9. Найти область определения функции .

Решение. Решим неравенство:

Таким образом, получаем область определения данной функции - отрезок [- 4; 4] .

Пример 10. Найти область определения функции .

Решение. Решим два неравенства:

Решение первого неравенства:

Решение второго неравенства:

Таким образом, получаем область определения данной функции - отрезок .

Область определения дроби

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x , при которых знаменатель дроби обращается в нуль.

Пример 11. Найти область определения функции .

Решение. Решая равенство нулю знаменателя дроби, находим область определения данной функции - множество ]- ∞; - 2[ ∪ ]- 2 ;+ ∞[ .

Пример 12. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции - ]- ∞; - 1[ ∪ ]- 1 ; 1[ ∪ ]1 ;+ ∞[ .

В уравнениях и неравенствах вида , , , , пересечение областей определения функций и называют областью допустимых значений (ОДЗ) переменной, а также ОДЗ уравнения или неравенства соответственно.

При решении уравнений (неравенств) с одной переменной, когда встает вопрос – находить ли ОДЗ, часто можно услышать категоричное «да» и не менее категоричное «нет». «Сначала нужно найти ОДЗ, а затем приступать к решению уравнения (неравенства)», - утверждают одни. «Незачем тратить время на ОДЗ, по ходу решения будем переходить к равносильному уравнению (неравенству) или к равносильной системе уравнений и неравенств или только неравенств. В конце концов, если это уравнение, то можно сделать проверку», - утверждают другие.

Так находить ли ОДЗ?

Конечно, однозначного ответа на этот вопрос не существует. Нахождение ОДЗ уравнения или неравенства не является обязательным элементом решения. В каждом конкретном примере этот вопрос решается индивидуально.

В одних случаях нахождение ОДЗ упрощает решение уравнения или неравенства (примеры 1-5), а в ряде случаев даже является необходимым этапом решения (примеры 1, 2, 4).

В других случаях (примеры 6, 7) от предварительного нахождения ОДЗ стоит отказаться, так как оно делает решение более громоздким.

Пример 1. Решить уравнение .

Возведение обеих частей уравнения в квадрат не упростит, а усложнит его и не позволит избавиться от радикалов. Нужно искать другой способ решения.

Найдем ОДЗ уравнения:

Таким образом, ОДЗ содержит только одно значение , а, следовательно, корнем исходного уравнения может служить только число 4. Непосредственной подстановкой убеждаемся, что – единственный корень уравнения.

Пример 2. Решить уравнение .

Наличие в уравнении радикалов различных степеней – второй, третьей и шестой – делает решение сложным. Поэтому, прежде всего, найдем ОДЗ уравнения:

Непосредственной подстановкой убеждаемся, что является корнем исходного уравнения.

Пример 3. Решить неравенство .

Конечно, можно решать это неравенство, рассматривая случаи: , , но нахождение ОДЗ сразу же упрощает это решение.

ОДЗ:

Подставляя это единственное значение в исходное неравенство, получим ложное числовое неравенство . Следовательно, исходное неравенство не имеет решения.

Ответ: нет решения.

Пример 4. Решить уравнение .

Запишем уравнение в виде .

Уравнение вида равносильно смешанной системе т.е.

Конечно, здесь нахождение ОДЗ излишне.

В нашем случае получим равносильную систему т.е.

Уравнение равносильно совокупности Уравнение рациональных корней не имеет, но оно может иметь иррациональные корни, нахождение которых вызовет у учащихся затруднения. Поэтому поищем другой способ решения.

Вернемся к первоначальному уравнению, запишем его в виде .

Найдем ОДЗ: .

При правая часть уравнения , а левая часть . Следовательно, исходное уравнение в области допустимых значений переменной х равносильно системе уравнений решением которой является только одно значение .

Таким образом, в данном примере именно нахождение ОДЗ позволило решить исходное уравнение.

Пример 5. Решить уравнение .

Так как , а , то при решении исходного уравнения нужно будет избавляться от модулей (раскрывать их).

Поэтому, сначала имеет смысл найти ОДЗ уравнения:

Итак, ОДЗ:

Упростим исходное уравнение, воспользовавшись свойствами логарифмов.

Так как в области допустимых значений переменной х и , то , а , тогда получим равносильное уравнение:

Учитывая, что в ОДЗ , перейдем к равносильному уравнению и решим его, разделив обе части на 3.

Ответ: − 4,75.

Замечание.

Если не находить ОДЗ, то при решении уравнения необходимо было бы рассмотреть четыре случая: , , , . На каждом из этих промежутков знакопостоянства выражений, стоящих под знаком модуля, нужно было бы раскрыть модули и решить полученное уравнение. Кроме того еще и выполнить проверку. Мы видим, что нахождение ОДЗ исходного уравнения значительно упрощает его решение.

Пример 7. Решить неравенство .

Так как переменная х входит и в основание логарифма, то при решении этого неравенства необходимо будет рассмотреть два случая: и . Поэтому отдельно находить ОДЗ нецелесообразно.

Итак, представим исходное неравенство в виде и оно будет равносильно совокупности двух систем:

Ответ: .

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1: а, если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Определение 1

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Определение 2

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Определение 3

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Пример 1

Для примера рассмотрим выражение вида 1 x - y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид (0 , 1 , 2) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 - 1 + 2 = 1 1 = 1 . Отсюда видим, что (1 , 1 , 2) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 - 2 + 1 = 1 0 .

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Определение 4

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Пример 2

Если имеем выражение вида 5 z - 3 , тогда ОДЗ имеет вид (− ∞ , 3) ∪ (3 , + ∞) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x - y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f (x) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ - 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Пример 3

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Пример 4

Найти ОДЗ выражения 1 3 - x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Пример 5

Найти ОДЗ заданного выражения x + 2 · y + 3 - 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Пример 6

Определить ОДЗ выражения вида 1 x + 1 - 1 + log x + 8 (x 2 + 3) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 - 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 - 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0) ∪ (0 , + ∞) .

Ответ: [ − 1 , 0) ∪ (0 , + ∞)

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

Тождественные преобразования:

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Пример 7

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Пример 8

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (− ∞ , 0) ∪ (0 , + ∞) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Пример 9

Если имеется x - 1 · x - 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x − 1) · (x − 3) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (− ∞ , 1 ] ∪ [ 3 , + ∞) . После преобразования x - 1 · x - 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x - 1 ≥ 0 , x - 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞) . Значит, ОДЗ полностью записывается так: (− ∞ , 1 ] ∪ [ 3 , + ∞) .

Нужно избегать преобразований, которые сужают ОДЗ.

Пример 10

Рассмотрим пример выражения x - 1 · x - 3 , когда х = - 1 . При подстановке получим, что - 1 - 1 · - 1 - 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x - 1 · x - 3 , тогда при вычислении получим, что 2 - 1 · 2 - 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Пример 11

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится (− ∞ 0) ∪ (0 , + ∞) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Пример 12

Если имеется выражение вида ln x + ln (x + 3) , его заменяют на ln (x · (x + 3)) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0 , + ∞) до (− ∞ , − 3) ∪ (0 , + ∞) . Поэтому для определения ОДЗ ln (x · (x + 3)) необходимо производить вычисления на ОДЗ, то есть (0 , + ∞) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений . Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

  • не влиять на ОДЗ;
  • приводить к расширению ОДЗ;
  • приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x , ОДЗ переменной x для этого выражения есть множество R . Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые , в результате оно примет вид x 2 +4·x . Очевидно, ОДЗ переменной x этого выражения тоже является множество R . Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x . В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x , для которого ОДЗ есть R . Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

Осталось рассмотреть пример сужения области допустимых значений после проведения преобразований. Возьмем выражение . ОДЗ переменной x определяется неравенством (x−1)·(x−3)≥0 , для его решения подходит, например, в результате имеем (−∞, 1]∪∪; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М. : Просвещение, 2010.- 368 с. : ил.- ISBN 978-5-09-022771-1.
  • Научный руководитель:

    1. Введение 3

    2. Исторический очерк 4

    3. «Место» ОДЗ при решении уравнений и неравенств 5-6

    4. Особенности и опасность ОДЗ 7

    5. ОДЗ – есть решение 8-9

    6. Нахождение ОДЗ – лишняя работа. Равносильность переходов 10-14

    7. ОДЗ в ЕГЭ 15-16

    8. Заключение 17

    9. Литература 18

    1. Введение

    Проблема: уравнения и неравенства, в которых нужно находить ОДЗ, не нашли места в курсе алгебры систематического изложения, возможно поэтому я и мои сверстники часто делаем ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об ОДЗ.

    Цель: уметь анализировать ситуацию и делать логически корректные выводы в примерах, где нужно учесть ОДЗ.

    Задачи:

    1. Изучить теоретический материал;

    2. Прорешать множество уравнений, неравенств: а) дробно-рациональных; б) иррациональных; в) логарифмических; г) содержащих обратные тригонометрические функции;

    3. Применить изученные материалы в ситуации, которая отличается от стандартной;

    4. Создать работу по теме «Область допустимых значений: теория и практика»

    Работа над проектом: работу над проектом я начала с повторения известных мне функций. Область определения многих из них имеет ограничения.

    ОДЗ встречается:

    1. При решении дробно-рациональных уравнений и неравенств

    2. При решении иррациональных уравнений и неравенств

    3. При решении логарифмических уравнений и неравенств

    4. При решении уравнений и неравенств, содержащих обратные тригонометрические функции

    Прорешав множество примеров из различных источников (пособий по ЕГЭ, учебников, справочников), я систематизировала решение примеров по следующим принципам:

    · можно решить пример и учесть ОДЗ (самый распространённый способ)

    · можно решить пример, не учитывая ОДЗ

    · можно только учитывая ОДЗ прийти к правильному решению.

    Методы, использованные в работе: 1) анализ; 2) статистический анализ; 3) дедукция; 4) классификация; 5) прогнозирование.

    Изучила анализ результатов ЕГЭ за прошедшие годы. Много ошибок было допущено в примерах, в которых нужно учитывать ОДЗ. Это ещё раз подчёркивает актуальность моей темы.

    2. Исторический очерк

    Как и остальные понятия математики, понятие функции сложилось не сразу, а прошло долгий путь развития. В работе П. Ферма «Введение и изучение плоских и телесных мест» (1636, опубл. 1679) говорится: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». По существу здесь идёт речь о функциональной зависимости и её графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости двух переменных величин. У И. Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная обратность действий дифференцирования и интегрирования (разумеется, без употребления самих этих терминов). Это свидетельствует уже о совершенно отчётливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона. Однако термин «функция» впервые появляется лишь в 1692 у Г. Лейбница и притом не совсем в современном его понимании. Г. Лейбниц называет функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы её точек). В первом печатном курсе «Анализа бесконечно малых для познания кривых линий» Лопиталя (1696) термин «функция» не употребляется.

    Первое определение функции в смысле, близком к современному, встречается у И. Бернулли (1718): «Функция - это величина, составленная из переменной и постоянной». В основе этого не вполне отчётливого определения лежит идея задания функции аналитической формулой. Та же идея выступает и в определении Л. Эйлера, данном им во «Введении в анализ бесконечных» (1748): «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств». Впрочем, уже Л. Эйлеру не чуждо и современное понимание функции, которое не связывает понятие функции с каким-либо аналитическим её выражением. В его «Дифференциальном исчислении» (1755) говорится: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функциями вторых».

    С начала XIX века уже всё чаще и чаще определяют понятие функции без упоминания об её аналитическом изображении. В «Трактате по дифференциальному и интегральному исчислению» (1797-1802) С. Лакруа говорится: «Всякая величина, значение которой зависит от одной или многих других величин, называется функцией этих последних». В «Аналитической теории тепла» Ж. Фурье (1822) имеется фраза: «Функция f(x) обозначает функцию совершенно произвольную, то есть последовательность данных значений, подчинённых или нет общему закону и соответствующих всем значениям x , содержащимся между 0 и какой-либо величиной x ». Близко к современному и определение Н. И. Лобачевского: «…Общее понятие функции требует, чтобы функцией от x называть число, которое даётся для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подаёт средство испытывать все числа и выбирать одно из них, или, наконец, зависимость может существовать и оставаться неизвестной». Там же немного ниже сказано: «Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа одни с другими в связи понимать как бы данными вместе». Таким образом, современное определение функции, свободное от упоминаний об аналитическом задании, обычно приписываемое П. Дирихле (1837), неоднократно предлагалось и до него.

    Областью определения (допустимых значений) функции у называется совокупность значений независимой переменной х, при которых эта функция определена, т. е. область изменения независимой переменной (аргумента).

    3. «Место» области допустимых значений при решении уравнений и неравенств

    1. При решении дробно-рациональных уравнений и неравенств знаменатель не должен равняться нулю.

    2. Решение иррациональных уравнений и неравенств.

    2.1..gif" width="212" height="51"> .

    В данном случае нет необходимости находить ОДЗ: из первого уравнения следует, что при полученных значения х выполняется неравенство: https://pandia.ru/text/78/083/images/image004_33.gif" width="107" height="27 src="> является система:

    Поскольку в уравнение и входят равноправно, то вместо неравенства , можно включить неравенство https://pandia.ru/text/78/083/images/image009_18.gif" width="220" height="49">

    https://pandia.ru/text/78/083/images/image014_11.gif" width="239" height="51">

    3. Решение логарифмических уравнений и неравенств.

    3.1. Схема решения логарифмического уравнения

    Но проверить достаточно только одно условие ОДЗ.

    3.2..gif" width="115" height="48 src=">.gif" width="115" height="48 src=">

    4. Тригонометрические уравнения вида равносильны системе (вместо неравенства в систему можно включить неравенство https://pandia.ru/text/78/083/images/image024_5.gif" width="377" height="23"> равносильны уравнению

    4. Особенности и опасность области допустимых значений

    На уроках математики от нас требуют нахождения ОДЗ в каждом примере. В то же время по математической сути дела нахождение ОДЗ вовсе не является обязательным, часто не нужно, а иногда и невозможно - и все это без какого бы то ни бы­ло ущерба для решения примера. С другой стороны, часто случается такое, что решив пример, школьники забывают учесть ОДЗ, записывают её как конечный ответ, учитывают лишь некоторые условия. Обстоятельство это хорошо из­вестно, но «война» продолжается каждый год и, похоже, будет идти еще долго.

    Рассмотрим, к примеру, такое неравенство:

    Здесь ищется ОДЗ, и неравенство решается. Однако при реше­нии этого неравенства школьники иногда считают, что вполне можно обойтись без поиска ОДЗ, точнее, можно обойтись и без условия

    В самом деле, для получения верного ответа необходимо учесть и неравенство , и .

    А вот, например, решение уравнения: https://pandia.ru/text/78/083/images/image032_4.gif" width="79 height=75" height="75">

    что равносильно работе с ОДЗ. Однако и в этом примере такая работа излишняя - достаточно проверить выполнение только двух из этих неравенств, причем любых двух.

    Напомню, что всякое уравнение (неравенство) может быть сведено к виду . ОДЗ - это просто область определения функции в левой части. То, что за этой об­ластью надо следить, вытекает уже из определения корня как числа из области определения данной функции, тем самым - из ОДЗ. Вот забавный пример на эту тему..gif" width="20" height="21 src="> имеет областью опреде­ления множество положительных чисел (это, конечно, договоренность - рассматривать функцию при, , но разум­ная), а тогда -1 не является корнем.

    5. Область допустимых значений – есть решение

    И наконец, в массе примеров нахождение ОДЗ позволяет получить ответ без громоздких выкладок, а то и вовсе устно.

    1. ОД3 представляет собой пустое множество, а значит, исход­ный пример не имеет решений.

    1) 2) 3)

    2. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

    1) , х=3

    2) Здесь в ОДЗ находится только число 1, и после подстановки видно, что оно не является корнем.

    3) В ОДЗ находятся два числа: 2 и 3, и оба подходят.

    4) > В ОДЗ находятся два числа 0 и 1, и подходит только 1.

    Эффективно может использоваться ОДЗ в сочетании с анали­зом самого выражения.

    5) < ОДЗ: Но в правой части неравенства могут быть только положительные числа, поэтому оставляем х=2. Тогда в неравенство подставим 2.

    6) Из ОДЗ следует, что, откуда имеем ..gif" width="143" height="24"> Из ОДЗ имеем: . Но тогда и . Так как, то решений нет.

    Из ОДЗ имеем:https://pandia.ru/text/78/083/images/image060_0.gif" width="48" height="24">>, а значит, . Решая по­следнее неравенство, получим х<- 4, что не входит в ОДЗ. По­этому решения нет.

    3) ОДЗ: . Так как, то

    С другой стороны,https://pandia.ru/text/78/083/images/image068_0.gif" width="160" height="24">

    ОДЗ:. Рассмотрим уравнение на промежутке [-1; 0).

    На нем выполняются такие неравенства https://pandia.ru/text/78/083/images/image071_0.gif" width="68" height="24 src=">.gif" width="123" height="24 src="> и решений нет. При функции и https://pandia.ru/text/78/083/images/image076_0.gif" width="179" height="25">. ОДЗ: х>2..gif" width="233" height="45 src="> Найдём ОДЗ:

    Целочисленное решение возможно лишь при х=3 и х=5. Проверкой находим, что корень х=3 не подходит, а значит ответ: х=5.

    6. Нахождение области допустимых значений – лишняя работа. Равносильность переходов.

    Можно привести примеры, где ситуация ясна и без нахож­дения ОДЗ.

    1.

    Равенство невозможно, ибо при вычитании из меньшего выраже­ния большее должно получатся отрицательное число.

    2. .

    Сумма двух неотрицательных функций не может быть отрицатель­ной.

    Приведу также примеры, где нахождение ОДЗ затруднено, а иногда просто невозможно.

    И, наконец, поиски ОДЗ являются очень часто просто лишней работой, без которой прекрасно можно обойтись, доказав тем са­мым понимание происходящего. Тут можно привести громадное число примеров, поэтому я выберу только наиболее типичные. Главным приемом решения являются в этом случае равносиль­ные преобразования при переходе от одного уравнения (нера­венства, системы) к другому.

    1.. ОДЗ не нужна, ибо, найдя те значения х, при которых х2=1, мы не можем получить х=0.

    2. . ОДЗ не нужна, ибо мы выясняем, когда выполняется равенство подкоренного выражения положи­тельному числу.

    3. . ОДЗ не нужна по тем же сооб­ражениям, что и в предыдущем примере.

    4.

    ОДЗ не нуж­на, ибо подкоренное выражение равно квадрату некоторой функ­ции, а потому не может быть отрицательным.

    5.

    6. ..gif" width="271" height="51"> Для решения до­статочно только одного ограничения для подкоренного выражения. В самом деле, из записанной смешанной системы следует, что и другое подкоренное выражение неотрицательно.

    8. ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

    9. ОДЗ не нужна, так как достаточно, чтобы были положительны два из трех выражений под знаками логарифма, чтобы обеспечить положительность третьего.

    10. .gif" width="357" height="51"> ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

    Стоит, однако, заметить, что при решении способом равно­сильных преобразований помогает знание ОДЗ (и свойств функ­ций).

    Вот несколько примеров.

    1. . ОД3 , откуда следует положительность выражения в правой части, и возможно записать уравнение, рав­носильное данному, в таком виде https://pandia.ru/text/78/083/images/image101_0.gif" width="112" height="27"> ОДЗ: . Но тогда , и при решении этого неравенства не надо рассматривать случай, когда правая часть меньше 0.

    3. . Из ОДЗ следует, что , а потому случай, когда https://pandia.ru/text/78/083/images/image106_0.gif" width="303" height="48"> Переход в общем виде выглядит так:

    https://pandia.ru/text/78/083/images/image108_0.gif" width="303" height="24">

    Возможны два случая: 0>1.

    Значит, исходное неравенство равносильно следующей совокупности систем неравенств:

    Первая система не имеет решений, а из второй получаем: x<-1 – решение неравенства.

    Понимание условий равносильности требует знания некоторых тонкостей. Например, почему равносильны такие уравнения:

    Или

    И наконец, возможно, самое существенное. Дело в том, что равносильность гарантирует правильность ответа, если совер­шаются какие-то преобразования самого уравнения, но не исполь­зуется при преобразованиях только в одной из частей. Сокращение, использование различных формул в одной из частей не попадают под действие теорем о равносильности. Некоторые примеры такого вида я уже приводила. Рассмотрим еще примеры.

    1. Такое решение естественно. В ле­вой части по свойству логарифмической функции перейдём к выражению ..gif" width="111" height="48">

    Решив эту систему, мы получим результат (-2 и 2), который, однако, не является ответом, так как число -2 не входит в ОДЗ. Так что же, нам необходимо установить ОДЗ? Нет, конечно. Но раз мы в решении использовали некое свойство логарифмической функции, то мы обязаны обеспечить те условия, при кото­рых оно выполняется. Таким условием является положительность выражений под знаком логарифма..gif" width="65" height="48">.

    2. ..gif" width="143" height="27 src="> таким способом подстановке подлежат числа . Кому охота делать такие нудные выкладки?.gif" width="12" height="23 src="> добавить условие , и сразу видно, что этому условию отвечает только число https://pandia.ru/text/78/083/images/image128_0.gif" width="117" height="27 src=">) продемонстрировали 52% сдающих. Одной из причин таких низких показателей является тот факт, что многие выпускники не произвели отбор корней, полученных из уравнения после его возведения в квадрат.

    3) Рассмотрим, например, решение одной из задач С1: "Найдите все значения x, для которых точки графика функции лежат выше соответствующих точек графика функции ". Задание сводится к решению дробного неравенства, содержащего логарифмическое выражение. Приемы решения таких неравенств нам известны. Самым распространенным из них является метод интервалов. Однако при его применении сдающие допускают разнообразные ошибки. Рассмотрим наиболее распространенные ошибки на примере неравенства:

    X < 10. Они отмечают, что в первом случае решений нет, а во втором – корнями являются числа –1 и . При этом выпускники не учитывают условие x < 10.

    8. Заключение

    Подводя некоторый итог, можно сказать, что уни­версального метода решения уравнения и неравенств нет. Каждый раз, если хочешь понять, что делаешь, а не действовать механически, возникает дилемма: а какой способ решения выбрать, в частности искать ОДЗ или не надо? Я думаю, что полученный мною опыт поможет мне решить эту дилемму. Я перестану делать ошибки, научившись правильно использовать ОДЗ. Получится ли у меня это, покажет время, точнее ЕГЭ.

    9. Литература

    И др. «Алгебра и начала анализа 10-11» задачник и учебник, М.: «Просвещение», 2002. «Справочник по элементарной математике». М.: «Наука», 1966. Газета «Математика» №46,Газета «Математика» №Газета «Математика» № «История математики в школе VII-VIII классы». М.: «Просвещение», 1982. и др. «Самое полное издание вариантов реальных заданий ЕГЭ: 2009/ФИПИ» - М.: «Астрель», 2009. и др. «ЕГЭ. Математика. Универсальные материалы для подготовки учащихся/ФИПИ» - М.: «Интеллект-центр», 2009. и др. «Алгебра и начала анализа 10-11». М.: «Просвещение», 2007. , «Практикум по решению задач школьной математики (практикум по алгебре)». М.: Просвещение, 1976. «25000 уроков математики». М.: «Просвещение», 1993. «Готовимся к олимпиадам по математике». М.: «Экзамен», 2006. «Энциклопедия для детей «МАТЕМАТИКА»» том 11, М.: Аванта +; 2002. Материалы сайтов www. *****, www. *****.

    Windows 7