Топология сети: определение, виды, назначение. Что такое топология? Что понимается под топологией локальной сети Основные сетевые топологии

Глава 3 Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

Существует три, базовые топологии сети:

    Шина (bus) - все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1.5).

Рис. 1.5. Сетевая топология шина

    Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 1.6). Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.


Рис. 1.6. Сетевая топология звезда

    Кольцо (ring) - компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 1.7.)


Рис. 1.7. Сетевая топология кольцо

На практике нередко используют и другие топологии локальных сетей, однако большинство сетей ориентировано именно на три базовые топологии.

Прежде чем перейти к анализу особенностей базовых сетевых топологий, необходимо выделить некоторые важнейшие факторы, влияющие на физическую работоспособность сети и непосредственно связанные с понятием топология.

    Исправность компьютеров (абонентов), подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

    Исправность сетевого оборудования, то есть технических средств, непосредственно подключенных к сети (адаптеры, трансиверы, разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом.

    Целостность кабеля сети. При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле.

    Ограничение длины кабеля, связанное с затуханием распространяющегося по нему сигнала. Как известно, в любой среде при распространении сигнал ослабляется (затухает). И чем большее расстояние проходит сигнал, тем больше он затухает (рис. 1.8). Необходимо следить, чтобы длина кабеля сети не была больше предельной длины L пр, при превышении которой затухание становится уже неприемлемым (принимающий абонент не распознает ослабевший сигнал).


Рис. 1.8. Затухание сигнала при распространении по сети

3.1 Топология шина

Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта , коллизии ). В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии шина отсутствует явно выраженный центральный абонент, через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.


Рис. 1.9. Обрыв кабеля в сети с топологией шина

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины (рис. 1.9). Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов , показанных на рис. 1.5 и 1.9 в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе книги. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей (на рис. 1.10 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.


Рис. 1.10. Соединение сегментов сети типа шина с помощью репитера

3. 2 Топология звезда

Звезда - это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка . Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 L пр), так как каждый из кабелей, соединяющий центр с периферийным абонентом, может иметь длину L пр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6, носит название активной или истинной звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер, то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи.


Рис. 1.11. Топология пассивная звезда и ее эквивалентная схема

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспективной топологией.

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

3. 3 Топология кольцо

Кольцо - это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов.

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.


Рис. 1.12. Сеть с двумя кольцами

Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях (рис. 1.12). Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

3.4 Другие топологии

Кроме трех рассмотренных базовых топологий нередко применяется также сетевая топология дерево (tree), которую можно рассматривать как комбинацию нескольких звезд. Причем, как и в случае звезды, дерево может быть активным или истинным (рис. 1.13) и пассивным (рис. 1.14). При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы).


Рис. 1.13. Топология активное дерево


Рис. 1.14. Топология пассивное дерево. К - концентраторы

Довольно часто применяются комбинированные топологии, среди которых наиболее распространены звездно-шинная (рис. 1.15) и звездно-кольцевая (рис. 1.16).


Рис. 1.15. Пример звездно-шинной топологии


Рис. 1.16. Пример звездно-кольцевой топологии

В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. К концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты. На самом деле реализуется физическая топология шина, включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. В результате получается звездно-шинное дерево. Таким образом, пользователь может гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количество компьютеров, подключенных к сети. С точки зрения распространения информации данная топология равноценна классической шине.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.16 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рис. 1.16). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.

В заключение надо также сказать о сеточной топологии (mesh), при которой компьютеры связываются между собой не одной, а многими линиями связи, образующими сетку (рис. 1.17).


Рис. 1.17. Сеточная топология: полная (а) и частичная (б)

В полной сеточной топологии каждый компьютер напрямую связан со всеми остальными компьютерами. В этом случае при увеличении числа компьютеров резко возрастает количество линий связи. Кроме того, любое изменение в конфигурации сети требует внесения изменений в сетевую аппаратуру всех компьютеров, поэтому полная сеточная топология не получила широкого распространения.

Частичная сеточная топология предполагает прямые связи только для самых активных компьютеров, передающих максимальные объемы информации. Остальные компьютеры соединяются через промежуточные узлы. Сеточная топология позволяет выбирать маршрут для доставки информации от абонента к абоненту, обходя неисправные участки. С одной стороны, это увеличивает надежность сети, с другой же – требует существенного усложнения сетевой аппаратуры, которая должна выбирать маршрут.

Заключение

Заканчивая обзор особенностей топологий локальных сетей, необходимо отметить, что топология все-таки не является основным фактором при выборе типа сети. Гораздо важнее, например, уровень стандартизации сети, скорость обмена, количество абонентов, стоимость оборудования, выбранное программное обеспечение. Но, с другой стороны, некоторые сети позволяют использовать разные топологии на разных уровнях. Этот выбор уже целиком ложится на пользователя, который должен учитывать все перечисленные в данной главе соображения.

Список литературы

    Бройдо, В.Л. Вычислительные системы, сети и телекоммуникации: Учебник для вузов. – 2-е изд. – СПб.: Питер, 2006. – 703с.

    Куроуз, Дж., Росс, К. Компьютерные сети. – 2-е изд. – СПб.: Питер, 2004. – 756с.

    Новиков, Ю.В., Кондратенко, С.В. Локальные сети. Архитектура, алгоритмы, проектирование. – М.: Издательство ЭКОМ, 2000. – 312с.

    сети принято понимать совокупность стандартов, топологий и... неисправного пути сети . 5.3 Аппаратура для логической структуризации сети Сеть с типовой топологией ("Общая шина" ...
  1. Вычислительные системы, сети и телекоммуникации

    Книга >> Информатика, программирование

    Это локальные вычислительные сети (ЛВС) и глобальные вычислительные сети (ГВС). Обычно под локальной сетью понимают вычислительную сеть , ... локальных сетей сети с соответствующей типовой топологией ...

  2. Локальные сети понятие и виды

    Реферат >> Информатика

    Уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией , например топологией ... основные требования, которым должны удовлетворять локальные вычислительные сети . Группа 802 определила множество...

  3. Локальная сеть Ethernet

    Курсовая работа >> Информатика

    Оборудование для локальных сетей …………………………..15 Топология сети ……………………………………………….....16 Общие характеристики локальных вычислительных сетей ....22 Ethernеt безопасность локальной сети ………………………...26 ...

Топология (конфигурация) – это способ соединения компьютеров в сеть. Тип топологии определяет стоимость, защищенность, производительность и надежность эксплуатации рабочих станций, для которых имеет значение время обращения к файловому серверу.

Понятие топологии широко используется при создании сетей. Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий: широковещательные и последовательные.

В широковещательных топологиях ПК передает сигналы, которые могут быть восприняты остальными ПК. К таким топологиям относятся топологии: общая шина, дерево, звезда.

В последовательных топологиях информация передается только одному ПК. Примерами таких топологий являются: произвольная (произвольное соединение ПК), кольцо, цепочка.

При выборе оптимальной топологии преследуются три основных цели:

Обеспечение альтернативной маршрутизации и максимальной надежности передачи данных;

Выбор оптимального маршрута передачи блоков данных;

Предоставление приемлемого времени ответа и нужной пропускной способности.

При выборе конкретного типа сети важно учитывать ее топологию. Основными сетевыми топологиями являются: шинная (линейная) топология, звездообразная, кольцевая и древовидная.

Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в сети Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно.

Виды топологий

Существуют пять основных топологий (рис. 3.1): общая шина (Bus); кольцо (Ring); звезда (Star); древовидная (Tree); ячеистая (Mesh).

Рис. 3.1. Типы топологий

Общая шина

Общая шина – это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом. Топология общая шина (рис. 3.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети.

В случае топологии Общая шина кабель используется всеми станциями по очереди:

Рис. 3.2. Топология Общая шина

1. При передаче пакетов данных каждый компьютер адресует его конкретному компьютеру ЛВС, передавая его по сетевому кабелю в виде электрических сигналов.

2. Пакет в виде электрических сигналов передается по «шине» в обоих направлениях всем компьютерам сети.

3. Однако информацию принимает только тот адрес, который соответствует адресу получателя, указанному в заголовке пакета. Так как в каждый момент времени в сети может вести передачу только одна PC, то производительности ЛВС зависит от количества PC, подключенных к шине. Чем их больше, тем больше ожидающих передачи данных, тем ниже производительности сети. Однако нельзя указать прямую зависимость пропускной способности сети от количества PC, так как на нее также влияют:

· характеристики аппаратного обеспечения PC сети;

· частота, с которой передают сообщения PC;

· тип работающих сетевых приложений;

· тип кабеля и расстояние между PC в сети.

«Шина» – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе всей сети.

4. Данные в виде электрических сигналов распространяются по всей сети от одного конца кабеля к другому, и, достигая конца кабеля, будут отражаться и занимать «шину», что не позволит другим компьютерам осуществлять передачу.

5. Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливаются терминаторы (Т), поглощающие сигналы, прошедшие по «шине»,

6. При значительном расстоянии между PC (например, 180 м для тонкого коаксиального кабеля) в сегменте «шины» может наблюдаться ослабление электрического сигнала, что может привести к искажению или потере передаваемого пакета данных. В этом случае исходный сегмент следует разделить на два, установив между ними дополнительное устройство – репитер (повторитель), который усиливает принятый сигнал перед тем, как послать его дальше.

Правильно размещенные на длине сети повторители позволяют увеличить длину обслуживаемой сети и расстояние между соседними компьютерами. Следует помнить, что все концы сетевого кабеля должны быть к чему-либо подключены: к PC, терминатору или повторителю.

Разрыв сетевого кабеля или отсоединение одного из его концов приводит к прекращению функционирования сети. Сеть «падает». Сами PC сети остаются полностью работоспособными, но не могут взаимодействовать друг с другом. Если ЛВС на основе сервера, где большая часть программных и информационных ресурсов хранится на сервере, то PC, хотя и остаются работоспособными, но для практической работы малопригодны.

Шинная топология используется в сетях Ethernet, однако в последнее время встречается редко.

Примерами использования топологии общая шина является сеть 10Base-5 (соединение ПК толстым коаксиальным кабелем) и 10Base-2 (соединение ПК тонким коаксиальным кабелем).

Кольцо

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис. 3.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Рис. 3.3. Топология Кольцо

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях Token Ring кабельная ветвь из центрального концентратора называется MAU (Multiple Access Unit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо.

Звезда

Звезда – это топология ЛВС (рис. 3.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправного узла. Однако, если неисправен центральный узел, вся сеть выходит из строя.

Рис. 3.4. Топология Звезда

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Примером звездообразной топологии является топология Ethernet с кабелем типа Витая пара 10BASE-T, центром Звезды обычно является Hub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте.

Сравнительные характеристики базовых сетевых топологий представлены в табл. 3.1.

Таблица 3.1. Сравнительные характеристики базовых сетевых топологий

Топология

Преимущества

Недостатки

Экономный расход кабеля;

Недорогая и несложная в использовании среда передачи;

Простота и надежность;

Легкая расширяемость

При значительных объемах трафика уменьшается пропускная способность;

Трудная локализация проблем;

Выход из строя любого сегмента кабеля остановит работу всей сети

«Кольцо»

Все PC имеют равный доступ;

Количество пользователей не сказывается на производительности

Выход из строя одной PC выводит из строя всю сеть;

Трудно локализовать проблемы;

Изменение конфигурации сети требует остановки всей сети

«Звезда»

Легко производить монтаж сети или модифицировать сеть, добавляя новые PC;

Централизованный контроль и управление;

Выход из строя одного PC или одного сегмента кабеля не влияет на работу всей сети

Выход из строя или отключение питания концентратора (коммутатора) выводит из строя всю сеть; большой расход кабеля

На этой странице мы поговорим на такие темы, как: Коммуникационное оборудование , Топология сети и Компьютерная сеть и про все что с этим связано.
К Коммуникационному оборудованию относятся всевозможные аппаратные средства, необходимые для объединения узлов компьютерной сети , ее расширения и выполнения других функций. В компьютерных сетях с небольшим числом абонентов, где структура ограничивается базовой топологией сети, коммуникационное оборудование может отсутствовать.

Топология сети

Топология сети , это компоновка, структура, физическое расположение всех узлов компьютерной сети (рабочих станций, серверов, коммуникационного оборудования ) и способ соединения их линий связи. Топологию сети делят на:

  • Физическая — описывает реальное расположение и связи между узлами сети.
  • Логическая — управление обменом в сети, регулирование трафика, метод доступа.
  • Информационную — описывает направление потоков информации, передаваемых по сети.

Топология типа «Шина».

Топология типа шина , представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет — кому адресовано сообщение и если ей, то обрабатывает его. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» остальным станциям.

При построении больших компьютерных сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами — повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.

Типичная шинная топология имеет простую структуру кабельной системы с короткими отрезками кабелей. Поэтому по сравнению с другими топологиями стоимость ее реализации невелика. Однако низкая стоимость реализации компенсируется высокой стоимостью управления. Фактически, самым большим недостатком шинной топологии является то, что диагностика ошибок и изолирование сетевых проблем могут быть довольно сложными, поскольку здесь имеются несколько точек концентрации. Так как среда передачи данных не проходит через узлы, подключенные к сети, потеря работоспособности одного из устройств никак не сказывается на других устройствах. Хотя использование всего лишь одного кабеля может рассматриваться как достоинство шинной топологии, однако оно компенсируется тем фактом, что кабель, используемый в этом типе топологии, может стать критической точкой отказа. Другими словами, если шина обрывается, то ни одно из подключенных к ней устройств не сможет передавать сигналы.

Топология типа «Кольцо».

Топология типа кольцо , базовая топология компьютерной сети , в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть.

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков — пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Достоинства топологии типа «Кольцо» :

  • Простота установки.
  • Практически полное отсутствие дополнительного оборудования.
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки топологии типа «Кольцо» :

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети.
  • Сложность конфигурирования и настройки.
  • Сложность поиска неисправностей.

Топология типа «Звезда».

Топология типа звезда , базовая топология компьютерной сети , в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило «дерево»).

Рабочая станция, с которой нужно послать данные, отсылает их на концентратор, а тот определяет адресата и отдаёт ему информацию. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня — коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт получателю. Одновременно может быть передано несколько пакетов. Сколько зависит от коммутатора.

Достоинства топологии типа «Звезда» :

  • Выход из строя одной рабочей станции не отражается на работе всей сети в целом.
  • Хорошая масштабируемость сети.
  • Лёгкий поиск неисправностей и обрывов в сети.
  • Высокая производительность сети.
  • Гибкие возможности администрирования.

Недостатки топологии типа «Звезда» :

  • Выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом.
  • Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий.
  • Конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Топология типа «Дерево».

Топология типа дерево , топология компьютерной сети, образуется в основном в виде комбинаций вышеназванных топологий компьютерных сетей . Основание «дерева» вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители и коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

Под топологией вычислительной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают три основные топологии:

  • топология типа звезда;
  • топология типа кольцо;
  • топология типа общая шина.

При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел. В качестве центрального узла может выступать сервер или специальное устройство - концентратор (Hub).

Преимущества данной топологии состоят в следующем:

  1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.
  2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

  1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный компьютер выйдет из строя, то работа всей сети прекратится.
  2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

При топологии типа кольцо все компьютеры подключаются к линии, замкнутой в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер.

Передача информации в такой сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, которому требуется передать данные. Получив маркер, компьютер создает так называемый "пакет", в который помещает адрес получателя и данные, а затем отправляет этот пакет по кольцу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя.

После этого принимающий компьютер посылает источнику информации подтверждение факта получения данных. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

  1. Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.
  2. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

К недостаткам данной топологии относятся:

  1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.
  2. Для подключения нового клиента необходимо отключить работу сети.
  3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.
  4. Общая производительность сети определяется производи¬тельностью самого медленного компьютера.

При топологии типа общая шина все клиенты подключены к общему каналу передачи данных. При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

Передача информации в данной сети происходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот компьютер, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу данных.

Преимущества топологии общая шина:

  1. Вся информация находится в сети и доступна каждому компьютеру.
  2. Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.
  3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.
  4. Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

К недостаткам топологии типа общая шина относятся:

  1. Низкая скорость передачи данных, т.к. вся информация циркулирует по одному каналу (шине).
  2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем медленнее идет передача информации от одного компьютера к другому.
  3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Самым распространенным типом сети с топологией общая шина является сеть стандарта Ethernet со скоростью передачи информации 10 - 100 Мбит/сек.

Мы рассмотрели основные топологии ЛВС. Однако на практике при создании ЛВС организации могут одновременно использоваться сочетание нескольких топологий. Например, компьютеры в одном отделе могут быть соединены по схеме звезда, а в другом отделе по схеме общая шина, и между этими отделами проложена линия для связи.

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи . Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

Факторы, влияющие на физическую работоспособность сети и непосредственно связанные с понятием топология:

1) Исправность компьютеров (абонентов) , подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

2) Исправность сетевого оборудования , то есть технических средств, непосредственно подключенных к сети (адаптеры , трансиверы , разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом.

3) Целостность кабеля сети . При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле.

4) Ограничение длины кабеля , связанное с затуханием распространяющегося по нему сигнала. Как известно, в любой среде при распространении сигнал ослабляется (затухает). И чем большее расстояние проходит сигнал, тем больше он затухает (рис. 1.8). Необходимо следить, чтобы длина кабеля сети не была больше предельной длины Lпр, при превышении которой затухание становится уже неприемлемым (принимающий абонент не распознает ослабевший сигнал).

Рис. 1.8. Затухание сигнала при распространении по сети

Существует три базовые топологии сети:

Шина (bus) — все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1.5).

Рис. 1.5. Сетевая топология шина

Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать информацию только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта, коллизии). В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).


В топологии шина отсутствует явно выраженный центральный абонент, через который передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

Рис. 1.9. Обрыв кабеля в сети с топологией шина

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины (рис. 1.9). Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов, показанных на рис. 1.5 и 1.9 в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине Lпр, то полная длина шины не может превышать величины Lпр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов — репитеров или повторителей (на рис. 1.10 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 Lпр, так как каждый из сегментов может быть длиной Lпр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.

Рис. 1.10. Соединение сегментов сети типа шина с помощью репитера

Звезда (star) — к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 1.6). Информация от периферийного компьютера передается только центральному компьютеру, от центрального — одному или нескольким периферийным.

Рис. 1.6. Сетевая топология звезда

Звезда — это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 Lпр), так как каждый из кабелей, соединяющий центр с периферийным абонентом, может иметь длину Lпр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8—16 периферийных абонентов. В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6, носит название активной или истинной звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство — концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер, то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи.

Рис. 1.11. Топология пассивная звезда и ее эквивалентная схема

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную звезду, которая считается малоперспективной топологией.

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

Кольцо (ring) — компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 1.7).

Рис. 1.7. Сетевая топология кольцо

Кольцо — это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов.

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет Lпр, то суммарная длина кольца может достигать NLпр, где N — количество компьютеров в кольце. Полный размер сети в пределе будет NLпр/2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие — позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения.

Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

Рис. 1.12. Сеть с двумя кольцами

Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях (рис. 1.12). Цель подобного решения — увеличение (в идеале — вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

Windows 10